假设我有这个:

[
  {"name": "Tom", "age": 10},
  {"name": "Mark", "age": 5},
  {"name": "Pam", "age": 7}
]

通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}

如何做到这一点?


当前回答

为@FrédéricHamidi添加一点点。

如果你不确定字典列表中是否有键,这样做会有帮助:

next((item for item in dicts if item.get("name") and item["name"] == "Pam"), None)

其他回答

我会像这样创建一个字典的字典:

names = ["Tom", "Mark", "Pam"]
ages = [10, 5, 7]
my_d = {}

for i, j in zip(names, ages):
    my_d[i] = {"name": i, "age": j}

或者,使用与问题中完全相同的信息:

info_list = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
my_d = {}

for d in info_list:
    my_d[d["name"]] = d

然后你可以执行my_d["Pam"],得到{"name": "Pam", "age": 7}

使用列表推导式的一个简单方法是,如果l是列表

l = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

然后

[d['age'] for d in l if d['name']=='Tom']

你试过熊猫套餐吗?它非常适合这类搜索任务,也进行了优化。

import pandas as pd

listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)

# The pandas dataframe allows you to pick out specific values like so:

df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]

# Alternate syntax, same thing

df2 = df[ (df.name == 'Pam') & (df.age == 7) ]

我在下面添加了一些基准测试,以说明熊猫在更大范围内(即10万+条目)的更快运行时间:

setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'

import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))

t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))

#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714

@Frédéric Hamidi的回答很好。在Python 3中。X .next()的语法稍有改变。因此有一个小小的修改:

>>> dicts = [
     { "name": "Tom", "age": 10 },
     { "name": "Mark", "age": 5 },
     { "name": "Pam", "age": 7 },
     { "name": "Dick", "age": 12 }
 ]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}

正如@Matt在评论中提到的,你可以添加一个默认值:

>>> next((item for item in dicts if item["name"] == "Pam"), False)
{'name': 'Pam', 'age': 7}
>>> next((item for item in dicts if item["name"] == "Sam"), False)
False
>>>
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]

def search(name):
    for p in people:
        if p['name'] == name:
            return p

search("Pam")