假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}
如何做到这一点?
假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}
如何做到这一点?
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]
def search(name):
for p in people:
if p['name'] == name:
return p
search("Pam")
你可以使用生成器表达式:
>>> dicts = [
... { "name": "Tom", "age": 10 },
... { "name": "Mark", "age": 5 },
... { "name": "Pam", "age": 7 },
... { "name": "Dick", "age": 12 }
... ]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}
如果你需要处理不存在的项,那么你可以做用户Matt在他的评论中建议的事情,并使用稍微不同的API提供默认值:
next((item for item in dicts if item["name"] == "Pam"), None)
并且要查找项目的索引,而不是项目本身,您可以枚举()列表:
next((i for i, item in enumerate(dicts) if item["name"] == "Pam"), None)
你可以使用列表推导式:
def search(name, people):
return [element for element in people if element['name'] == name]
我的第一个想法是,你可能想要考虑为这些字典创建一个字典……举个例子,如果你要多次搜索它。
然而,这可能是一个不成熟的优化。有什么问题:
def get_records(key, store=dict()):
'''Return a list of all records containing name==key from our store
'''
assert key is not None
return [d for d in store if d['name']==key]
names = [{'name':'Tom', 'age': 10}, {'name': 'Mark', 'age': 5}, {'name': 'Pam', 'age': 7}]
resultlist = [d for d in names if d.get('name', '') == 'Pam']
first_result = resultlist[0]
这是一种方法……
dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
dicts_by_name[d['name']]=d
print dicts_by_name['Tom']
#output
#>>>
#{'age': 10, 'name': 'Tom'}
这是在字典列表中搜索值的一般方法:
def search_dictionaries(key, value, list_of_dictionaries):
return [element for element in list_of_dictionaries if element[key] == value]
在我看来,这是最python的方式:
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]
filter(lambda person: person['name'] == 'Pam', people)
result(在Python 2中作为列表返回):
[{'age': 7, 'name': 'Pam'}]
注意:在python3中,返回一个filter对象。所以python3的解决方案是:
list(filter(lambda person: person['name'] == 'Pam', people))
@Frédéric Hamidi的回答很好。在Python 3中。X .next()的语法稍有改变。因此有一个小小的修改:
>>> dicts = [
{ "name": "Tom", "age": 10 },
{ "name": "Mark", "age": 5 },
{ "name": "Pam", "age": 7 },
{ "name": "Dick", "age": 12 }
]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}
正如@Matt在评论中提到的,你可以添加一个默认值:
>>> next((item for item in dicts if item["name"] == "Pam"), False)
{'name': 'Pam', 'age': 7}
>>> next((item for item in dicts if item["name"] == "Sam"), False)
False
>>>
为@FrédéricHamidi添加一点点。
如果你不确定字典列表中是否有键,这样做会有帮助:
next((item for item in dicts if item.get("name") and item["name"] == "Pam"), None)
这里是一个比较,使用遍历列表,使用过滤器+lambda或重构(如果需要或对你的情况有效)你的代码dict of dicts而不是list of dicts
import time
# Build list of dicts
list_of_dicts = list()
for i in range(100000):
list_of_dicts.append({'id': i, 'name': 'Tom'})
# Build dict of dicts
dict_of_dicts = dict()
for i in range(100000):
dict_of_dicts[i] = {'name': 'Tom'}
# Find the one with ID of 99
# 1. iterate through the list
lod_ts = time.time()
for elem in list_of_dicts:
if elem['id'] == 99999:
break
lod_tf = time.time()
lod_td = lod_tf - lod_ts
# 2. Use filter
f_ts = time.time()
x = filter(lambda k: k['id'] == 99999, list_of_dicts)
f_tf = time.time()
f_td = f_tf- f_ts
# 3. find it in dict of dicts
dod_ts = time.time()
x = dict_of_dicts[99999]
dod_tf = time.time()
dod_td = dod_tf - dod_ts
print 'List of Dictionries took: %s' % lod_td
print 'Using filter took: %s' % f_td
print 'Dict of Dicts took: %s' % dod_td
输出是这样的:
List of Dictionries took: 0.0099310874939
Using filter took: 0.0121960639954
Dict of Dicts took: 4.05311584473e-06
结论: 显然,字典是最有效的搜索方法在这种情况下,你知道,你只能通过id搜索。 有趣的是,使用过滤器是最慢的解决方案。
你试过熊猫套餐吗?它非常适合这类搜索任务,也进行了优化。
import pandas as pd
listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)
# The pandas dataframe allows you to pick out specific values like so:
df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]
# Alternate syntax, same thing
df2 = df[ (df.name == 'Pam') & (df.age == 7) ]
我在下面添加了一些基准测试,以说明熊猫在更大范围内(即10万+条目)的更快运行时间:
setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))
#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714
我在寻找答案的时候发现了这个帖子 的问题。虽然我知道这回答有点晚,但我想 把它贡献出来,以防对其他人有用:
def find_dict_in_list(dicts, default=None, **kwargs):
"""Find first matching :obj:`dict` in :obj:`list`.
:param list dicts: List of dictionaries.
:param dict default: Optional. Default dictionary to return.
Defaults to `None`.
:param **kwargs: `key=value` pairs to match in :obj:`dict`.
:returns: First matching :obj:`dict` from `dicts`.
:rtype: dict
"""
rval = default
for d in dicts:
is_found = False
# Search for keys in dict.
for k, v in kwargs.items():
if d.get(k, None) == v:
is_found = True
else:
is_found = False
break
if is_found:
rval = d
break
return rval
if __name__ == '__main__':
# Tests
dicts = []
keys = 'spam eggs shrubbery knight'.split()
start = 0
for _ in range(4):
dct = {k: v for k, v in zip(keys, range(start, start+4))}
dicts.append(dct)
start += 4
# Find each dict based on 'spam' key only.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam) == dicts[x]
# Find each dict based on 'spam' and 'shrubbery' keys.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+2) == dicts[x]
# Search for one correct key, one incorrect key:
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+1) is None
# Search for non-existent dict.
for x in range(len(dicts)):
spam = x+100
assert find_dict_in_list(dicts, spam=spam) is None
我测试了各种方法来遍历字典列表并返回键x具有特定值的字典。
结果:
速度:列表推导>生成器表达式>>常规列表迭代>>>过滤器。 所有的比例都与列表中的字典数量线性(10x列表大小-> 10x时间)。 对于大量(数千个)键,每个字典的键不会显著影响速度。请看我计算的图表:https://imgur.com/a/quQzv(方法名称见下文)。
所有测试均使用Python 3.6.4, W7x64完成。
from random import randint
from timeit import timeit
list_dicts = []
for _ in range(1000): # number of dicts in the list
dict_tmp = {}
for i in range(10): # number of keys for each dict
dict_tmp[f"key{i}"] = randint(0,50)
list_dicts.append( dict_tmp )
def a():
# normal iteration over all elements
for dict_ in list_dicts:
if dict_["key3"] == 20:
pass
def b():
# use 'generator'
for dict_ in (x for x in list_dicts if x["key3"] == 20):
pass
def c():
# use 'list'
for dict_ in [x for x in list_dicts if x["key3"] == 20]:
pass
def d():
# use 'filter'
for dict_ in filter(lambda x: x['key3'] == 20, list_dicts):
pass
结果:
1.7303 # normal list iteration
1.3849 # generator expression
1.3158 # list comprehension
7.7848 # filter
简单地使用列表理解:
[i for i in dct if i['name'] == 'Pam'][0]
示例代码:
dct = [
{'name': 'Tom', 'age': 10},
{'name': 'Mark', 'age': 5},
{'name': 'Pam', 'age': 7}
]
print([i for i in dct if i['name'] == 'Pam'][0])
> {'age': 7, 'name': 'Pam'}
你可以试试这个:
''' lst: list of dictionaries '''
lst = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
search = raw_input("What name: ") #Input name that needs to be searched (say 'Pam')
print [ lst[i] for i in range(len(lst)) if(lst[i]["name"]==search) ][0] #Output
>>> {'age': 7, 'name': 'Pam'}
你可以通过使用Python中的filter和next方法来实现这一点。
方法过滤给定序列并返回一个迭代器。 Next方法接受迭代器并返回列表中的下一个元素。
所以你可以通过,
my_dict = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
next(filter(lambda obj: obj.get('name') == 'Pam', my_dict), None)
输出是,
{'name': 'Pam', 'age': 7}
注意:如果没有找到所搜索的名称,上述代码将返回None。
使用列表推导式的一个简单方法是,如果l是列表
l = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
然后
[d['age'] for d in l if d['name']=='Tom']
这里提出的大多数(如果不是全部)实现都有两个缺陷:
他们假设只传递一个键来进行搜索,而对于复杂的字典,有更多的键可能是有趣的 它们假定所有传递用于搜索的键都存在于字典中,因此当KeyError不存在时,它们不会正确处理。
更新后的命题:
def find_first_in_list(objects, **kwargs):
return next((obj for obj in objects if
len(set(obj.keys()).intersection(kwargs.keys())) > 0 and
all([obj[k] == v for k, v in kwargs.items() if k in obj.keys()])),
None)
也许不是最python化的,但至少更安全一点。
用法:
>>> obj1 = find_first_in_list(list_of_dict, name='Pam', age=7)
>>> obj2 = find_first_in_list(list_of_dict, name='Pam', age=27)
>>> obj3 = find_first_in_list(list_of_dict, name='Pam', address='nowhere')
>>>
>>> print(obj1, obj2, obj3)
{"name": "Pam", "age": 7}, None, {"name": "Pam", "age": 7}
要点。
def dsearch(lod, **kw):
return filter(lambda i: all((i[k] == v for (k, v) in kw.items())), lod)
lod=[{'a':33, 'b':'test2', 'c':'a.ing333'},
{'a':22, 'b':'ihaha', 'c':'fbgval'},
{'a':33, 'b':'TEst1', 'c':'s.ing123'},
{'a':22, 'b':'ihaha', 'c':'dfdvbfjkv'}]
list(dsearch(lod, a=22))
[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
{'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]
list(dsearch(lod, a=22, b='ihaha'))
[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
{'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]
list(dsearch(lod, a=22, c='fbgval'))
[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'}]
我会像这样创建一个字典的字典:
names = ["Tom", "Mark", "Pam"]
ages = [10, 5, 7]
my_d = {}
for i, j in zip(names, ages):
my_d[i] = {"name": i, "age": j}
或者,使用与问题中完全相同的信息:
info_list = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
my_d = {}
for d in info_list:
my_d[d["name"]] = d
然后你可以执行my_d["Pam"],得到{"name": "Pam", "age": 7}
将接受的答案放在函数中,以便于重用
def get_item(collection, key, target):
return next((item for item in collection if item[key] == target), None)
也可以写成
get_item_lambda = lambda collection, key, target : next((item for item in collection if item[key] == target), None)
结果
key = "name"
target = "Pam"
print(get_item(target_list, key, target))
print(get_item_lambda(target_list, key, target))
#{'name': 'Pam', 'age': 7}
#{'name': 'Pam', 'age': 7}
如果键可能不在目标字典中,请使用dict。get和避免KeyError
def get_item(collection, key, target):
return next((item for item in collection if item.get(key, None) == target), None)
get_item_lambda = lambda collection, key, target : next((item for item in collection if item.get(key, None) == target), None)
鸭子将比列表理解或过滤器快得多。它在你的对象上建立一个索引,这样查找就不需要扫描每一个项目。
PIP安装鸭
from ducks import Dex
dicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Build the index
dex = Dex(dicts, {'name': str, 'age': int})
# Find matching objects
dex[{'name': 'Pam', 'age': 7}]
结果:[{'name': 'Pam', 'age': 7}]