假设我有这个:

[
  {"name": "Tom", "age": 10},
  {"name": "Mark", "age": 5},
  {"name": "Pam", "age": 7}
]

通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}

如何做到这一点?


当前回答

我测试了各种方法来遍历字典列表并返回键x具有特定值的字典。

结果:

速度:列表推导>生成器表达式>>常规列表迭代>>>过滤器。 所有的比例都与列表中的字典数量线性(10x列表大小-> 10x时间)。 对于大量(数千个)键,每个字典的键不会显著影响速度。请看我计算的图表:https://imgur.com/a/quQzv(方法名称见下文)。

所有测试均使用Python 3.6.4, W7x64完成。

from random import randint
from timeit import timeit


list_dicts = []
for _ in range(1000):     # number of dicts in the list
    dict_tmp = {}
    for i in range(10):   # number of keys for each dict
        dict_tmp[f"key{i}"] = randint(0,50)
    list_dicts.append( dict_tmp )



def a():
    # normal iteration over all elements
    for dict_ in list_dicts:
        if dict_["key3"] == 20:
            pass

def b():
    # use 'generator'
    for dict_ in (x for x in list_dicts if x["key3"] == 20):
        pass

def c():
    # use 'list'
    for dict_ in [x for x in list_dicts if x["key3"] == 20]:
        pass

def d():
    # use 'filter'
    for dict_ in filter(lambda x: x['key3'] == 20, list_dicts):
        pass

结果:

1.7303 # normal list iteration 
1.3849 # generator expression 
1.3158 # list comprehension 
7.7848 # filter

其他回答

你可以使用生成器表达式:

>>> dicts = [
...     { "name": "Tom", "age": 10 },
...     { "name": "Mark", "age": 5 },
...     { "name": "Pam", "age": 7 },
...     { "name": "Dick", "age": 12 }
... ]

>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}

如果你需要处理不存在的项,那么你可以做用户Matt在他的评论中建议的事情,并使用稍微不同的API提供默认值:

next((item for item in dicts if item["name"] == "Pam"), None)

并且要查找项目的索引,而不是项目本身,您可以枚举()列表:

next((i for i, item in enumerate(dicts) if item["name"] == "Pam"), None)

我测试了各种方法来遍历字典列表并返回键x具有特定值的字典。

结果:

速度:列表推导>生成器表达式>>常规列表迭代>>>过滤器。 所有的比例都与列表中的字典数量线性(10x列表大小-> 10x时间)。 对于大量(数千个)键,每个字典的键不会显著影响速度。请看我计算的图表:https://imgur.com/a/quQzv(方法名称见下文)。

所有测试均使用Python 3.6.4, W7x64完成。

from random import randint
from timeit import timeit


list_dicts = []
for _ in range(1000):     # number of dicts in the list
    dict_tmp = {}
    for i in range(10):   # number of keys for each dict
        dict_tmp[f"key{i}"] = randint(0,50)
    list_dicts.append( dict_tmp )



def a():
    # normal iteration over all elements
    for dict_ in list_dicts:
        if dict_["key3"] == 20:
            pass

def b():
    # use 'generator'
    for dict_ in (x for x in list_dicts if x["key3"] == 20):
        pass

def c():
    # use 'list'
    for dict_ in [x for x in list_dicts if x["key3"] == 20]:
        pass

def d():
    # use 'filter'
    for dict_ in filter(lambda x: x['key3'] == 20, list_dicts):
        pass

结果:

1.7303 # normal list iteration 
1.3849 # generator expression 
1.3158 # list comprehension 
7.7848 # filter
names = [{'name':'Tom', 'age': 10}, {'name': 'Mark', 'age': 5}, {'name': 'Pam', 'age': 7}]
resultlist = [d    for d in names     if d.get('name', '') == 'Pam']
first_result = resultlist[0]

这是一种方法……

你试过熊猫套餐吗?它非常适合这类搜索任务,也进行了优化。

import pandas as pd

listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)

# The pandas dataframe allows you to pick out specific values like so:

df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]

# Alternate syntax, same thing

df2 = df[ (df.name == 'Pam') & (df.age == 7) ]

我在下面添加了一些基准测试,以说明熊猫在更大范围内(即10万+条目)的更快运行时间:

setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'

import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))

t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))

#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714

这里提出的大多数(如果不是全部)实现都有两个缺陷:

他们假设只传递一个键来进行搜索,而对于复杂的字典,有更多的键可能是有趣的 它们假定所有传递用于搜索的键都存在于字典中,因此当KeyError不存在时,它们不会正确处理。

更新后的命题:

def find_first_in_list(objects, **kwargs):
    return next((obj for obj in objects if
                 len(set(obj.keys()).intersection(kwargs.keys())) > 0 and
                 all([obj[k] == v for k, v in kwargs.items() if k in obj.keys()])),
                None)

也许不是最python化的,但至少更安全一点。

用法:

>>> obj1 = find_first_in_list(list_of_dict, name='Pam', age=7)
>>> obj2 = find_first_in_list(list_of_dict, name='Pam', age=27)
>>> obj3 = find_first_in_list(list_of_dict, name='Pam', address='nowhere')
>>> 
>>> print(obj1, obj2, obj3)
{"name": "Pam", "age": 7}, None, {"name": "Pam", "age": 7}

要点。