假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}
如何做到这一点?
假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}
如何做到这一点?
当前回答
我测试了各种方法来遍历字典列表并返回键x具有特定值的字典。
结果:
速度:列表推导>生成器表达式>>常规列表迭代>>>过滤器。 所有的比例都与列表中的字典数量线性(10x列表大小-> 10x时间)。 对于大量(数千个)键,每个字典的键不会显著影响速度。请看我计算的图表:https://imgur.com/a/quQzv(方法名称见下文)。
所有测试均使用Python 3.6.4, W7x64完成。
from random import randint
from timeit import timeit
list_dicts = []
for _ in range(1000): # number of dicts in the list
dict_tmp = {}
for i in range(10): # number of keys for each dict
dict_tmp[f"key{i}"] = randint(0,50)
list_dicts.append( dict_tmp )
def a():
# normal iteration over all elements
for dict_ in list_dicts:
if dict_["key3"] == 20:
pass
def b():
# use 'generator'
for dict_ in (x for x in list_dicts if x["key3"] == 20):
pass
def c():
# use 'list'
for dict_ in [x for x in list_dicts if x["key3"] == 20]:
pass
def d():
# use 'filter'
for dict_ in filter(lambda x: x['key3'] == 20, list_dicts):
pass
结果:
1.7303 # normal list iteration
1.3849 # generator expression
1.3158 # list comprehension
7.7848 # filter
其他回答
我会像这样创建一个字典的字典:
names = ["Tom", "Mark", "Pam"]
ages = [10, 5, 7]
my_d = {}
for i, j in zip(names, ages):
my_d[i] = {"name": i, "age": j}
或者,使用与问题中完全相同的信息:
info_list = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
my_d = {}
for d in info_list:
my_d[d["name"]] = d
然后你可以执行my_d["Pam"],得到{"name": "Pam", "age": 7}
这是在字典列表中搜索值的一般方法:
def search_dictionaries(key, value, list_of_dictionaries):
return [element for element in list_of_dictionaries if element[key] == value]
dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
dicts_by_name[d['name']]=d
print dicts_by_name['Tom']
#output
#>>>
#{'age': 10, 'name': 'Tom'}
我在寻找答案的时候发现了这个帖子 的问题。虽然我知道这回答有点晚,但我想 把它贡献出来,以防对其他人有用:
def find_dict_in_list(dicts, default=None, **kwargs):
"""Find first matching :obj:`dict` in :obj:`list`.
:param list dicts: List of dictionaries.
:param dict default: Optional. Default dictionary to return.
Defaults to `None`.
:param **kwargs: `key=value` pairs to match in :obj:`dict`.
:returns: First matching :obj:`dict` from `dicts`.
:rtype: dict
"""
rval = default
for d in dicts:
is_found = False
# Search for keys in dict.
for k, v in kwargs.items():
if d.get(k, None) == v:
is_found = True
else:
is_found = False
break
if is_found:
rval = d
break
return rval
if __name__ == '__main__':
# Tests
dicts = []
keys = 'spam eggs shrubbery knight'.split()
start = 0
for _ in range(4):
dct = {k: v for k, v in zip(keys, range(start, start+4))}
dicts.append(dct)
start += 4
# Find each dict based on 'spam' key only.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam) == dicts[x]
# Find each dict based on 'spam' and 'shrubbery' keys.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+2) == dicts[x]
# Search for one correct key, one incorrect key:
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+1) is None
# Search for non-existent dict.
for x in range(len(dicts)):
spam = x+100
assert find_dict_in_list(dicts, spam=spam) is None
鸭子将比列表理解或过滤器快得多。它在你的对象上建立一个索引,这样查找就不需要扫描每一个项目。
PIP安装鸭
from ducks import Dex
dicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Build the index
dex = Dex(dicts, {'name': str, 'age': int})
# Find matching objects
dex[{'name': 'Pam', 'age': 7}]
结果:[{'name': 'Pam', 'age': 7}]