假设我有这个:

[
  {"name": "Tom", "age": 10},
  {"name": "Mark", "age": 5},
  {"name": "Pam", "age": 7}
]

通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}

如何做到这一点?


当前回答

你试过熊猫套餐吗?它非常适合这类搜索任务,也进行了优化。

import pandas as pd

listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)

# The pandas dataframe allows you to pick out specific values like so:

df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]

# Alternate syntax, same thing

df2 = df[ (df.name == 'Pam') & (df.age == 7) ]

我在下面添加了一些基准测试,以说明熊猫在更大范围内(即10万+条目)的更快运行时间:

setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'

import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))

t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))

#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714

其他回答

这是在字典列表中搜索值的一般方法:

def search_dictionaries(key, value, list_of_dictionaries):
    return [element for element in list_of_dictionaries if element[key] == value]
dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
    dicts_by_name[d['name']]=d

print dicts_by_name['Tom']

#output
#>>>
#{'age': 10, 'name': 'Tom'}
def dsearch(lod, **kw):
    return filter(lambda i: all((i[k] == v for (k, v) in kw.items())), lod)

lod=[{'a':33, 'b':'test2', 'c':'a.ing333'},
     {'a':22, 'b':'ihaha', 'c':'fbgval'},
     {'a':33, 'b':'TEst1', 'c':'s.ing123'},
     {'a':22, 'b':'ihaha', 'c':'dfdvbfjkv'}]



list(dsearch(lod, a=22))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
 {'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]



list(dsearch(lod, a=22, b='ihaha'))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
 {'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]


list(dsearch(lod, a=22, c='fbgval'))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'}]

简单地使用列表理解:

[i for i in dct if i['name'] == 'Pam'][0]

示例代码:

dct = [
    {'name': 'Tom', 'age': 10},
    {'name': 'Mark', 'age': 5},
    {'name': 'Pam', 'age': 7}
]

print([i for i in dct if i['name'] == 'Pam'][0])

> {'age': 7, 'name': 'Pam'}

你可以通过使用Python中的filter和next方法来实现这一点。

方法过滤给定序列并返回一个迭代器。 Next方法接受迭代器并返回列表中的下一个元素。

所以你可以通过,

my_dict = [
    {"name": "Tom", "age": 10},
    {"name": "Mark", "age": 5},
    {"name": "Pam", "age": 7}
]

next(filter(lambda obj: obj.get('name') == 'Pam', my_dict), None)

输出是,

{'name': 'Pam', 'age': 7}

注意:如果没有找到所搜索的名称,上述代码将返回None。