如何将数据帧列转换为数字类型?
蒂姆是对的,谢恩有个遗漏。以下是其他例子:
R> df <- data.frame(a = as.character(10:15))
R> df <- data.frame(df, num = as.numeric(df$a),
numchr = as.numeric(as.character(df$a)))
R> df
a num numchr
1 10 1 10
2 11 2 11
3 12 3 12
4 13 4 13
5 14 5 14
6 15 6 15
R> summary(df)
a num numchr
10:1 Min. :1.00 Min. :10.0
11:1 1st Qu.:2.25 1st Qu.:11.2
12:1 Median :3.50 Median :12.5
13:1 Mean :3.50 Mean :12.5
14:1 3rd Qu.:4.75 3rd Qu.:13.8
15:1 Max. :6.00 Max. :15.0
R>
我们的data.frame现在有了因子列的摘要(counts)和as.numeric()的数值摘要(这是错误的,因为它得到了数值因子级别)以及as.numeric(as.character())的(正确的)摘要。
有一点对我很有帮助:如果要转换的变量范围(或者不止一个),可以使用sapply。
有点荒谬,举个例子:
data(cars)
cars[, 1:2] <- sapply(cars[, 1:2], as.factor)
假设第3列、第6-15列和第37列的数据帧需要转换为数字:
dat[, c(3,6:15,37)] <- sapply(dat[, c(3,6:15,37)], as.numeric)
由于(仍然)没有人得到对号,我假设您心中有一些实际问题,主要是因为您还没有指定要将哪种类型的向量转换为数字。我建议你应用变换函数来完成你的任务。
现在我要演示某些“转换异常”:
# create dummy data.frame
d <- data.frame(char = letters[1:5],
fake_char = as.character(1:5),
fac = factor(1:5),
char_fac = factor(letters[1:5]),
num = 1:5, stringsAsFactors = FALSE)
让我们看一下data.frame
> d
char fake_char fac char_fac num
1 a 1 1 a 1
2 b 2 2 b 2
3 c 3 3 c 3
4 d 4 4 d 4
5 e 5 5 e 5
让我们奔跑:
> sapply(d, mode)
char fake_char fac char_fac num
"character" "character" "numeric" "numeric" "numeric"
> sapply(d, class)
char fake_char fac char_fac num
"character" "character" "factor" "factor" "integer"
现在你可能会问自己“异常点在哪里?”好吧,我在R中遇到过非常奇怪的东西,这不是最令人困惑的事情,但它会让你困惑,尤其是如果你在睡觉前读了这篇文章。
开始:前两列是字符。我故意把第二个称为fake_char。注意这个字符变量与Dirk在他的回复中创建的一个字符变量的相似性。它实际上是一个转换成字符的数字向量。第三和第四列是因子,最后一列是“纯”数字。
如果使用transform函数,则可以将fake_char转换为数字类型,但不能将char变量本身转换为数字类型。
> transform(d, char = as.numeric(char))
char fake_char fac char_fac num
1 NA 1 1 a 1
2 NA 2 2 b 2
3 NA 3 3 c 3
4 NA 4 4 d 4
5 NA 5 5 e 5
Warning message:
In eval(expr, envir, enclos) : NAs introduced by coercion
但如果你在fake_char和char_fac上做同样的事情,你会很幸运,并且没有NA:
> transform(d, fake_char = as.numeric(fake_char),
char_fac = as.numeric(char_fac))
char fake_char fac char_fac num
1 a 1 1 1 1
2 b 2 2 2 2
3 c 3 3 3 3
4 d 4 4 4 4
5 e 5 5 5 5
如果你保存转换后的data.frame并检查模式和类,你会得到:
> D <- transform(d, fake_char = as.numeric(fake_char),
char_fac = as.numeric(char_fac))
> sapply(D, mode)
char fake_char fac char_fac num
"character" "numeric" "numeric" "numeric" "numeric"
> sapply(D, class)
char fake_char fac char_fac num
"character" "numeric" "factor" "numeric" "integer"
因此,结论是:是的,您可以将字符向量转换为数字向量,但前提是它的元素可以“转换”为数字。如果vector中只有一个字符元素,则在尝试将该vector转换为数值1时将会得到错误。
为了证明我的观点:
> err <- c(1, "b", 3, 4, "e")
> mode(err)
[1] "character"
> class(err)
[1] "character"
> char <- as.numeric(err)
Warning message:
NAs introduced by coercion
> char
[1] 1 NA 3 4 NA
现在,只是为了好玩(或练习),试着猜测这些命令的输出:
> fac <- as.factor(err)
> fac
???
> num <- as.numeric(fac)
> num
???
向帕特里克·伯恩斯致以亲切的问候!=)
使用下面的代码,您可以将所有数据帧的列转换为数字(X是我们想要转换它的列的数据帧):
as.data.frame(lapply(X, as.numeric))
要将整个矩阵转换为数字,你有两种方法: :
mode(X) <- "numeric"
or:
X <- apply(X, 2, as.numeric)
你也可以使用数据。矩阵函数将所有内容转换为数字,尽管要注意,因子可能无法正确转换,因此先将所有内容转换为字符会更安全:
X <- sapply(X, as.character)
X <- data.matrix(X)
如果我想同时转换成矩阵和数字,我通常使用最后一个
虽然其他人已经很好地讨论了这个话题,但我想补充一个额外的快速思考/提示。可以使用regexp提前检查字符是否可能仅由数字组成。
for(i in seq_along(names(df)){
potential_numcol[i] <- all(!grepl("[a-zA-Z]",d[,i]))
}
# and now just convert only the numeric ones
d <- sapply(d[,potential_numcol],as.numeric)
想要了解更多复杂的正则表达式,以及为什么要学习/体验它们的力量,请访问这个非常好的网站:http://regexr.com/
我会加一条评论(不能低评级)
只需要添加user276042和pangratz
dat$x = as.numeric(as.character(dat$x))
这将覆盖现有列x的值
要将数据帧列转换为数字,你只需要做:-
因数转换为数字:-
data_frame$column <- as.numeric(as.character(data_frame$column))
如果你遇到以下问题:
as.numeric(as.character(dat$x))
看看你的小数点。如果它们是“,”而不是“。”(如。"5,3")以上都不行。
一个潜在的解决方案是:
as.numeric(gsub(",", ".", dat$x))
我相信这在一些非英语国家是很常见的。
使用type.convert()和rapply()的通用方式:
convert_types <- function(x) {
stopifnot(is.list(x))
x[] <- rapply(x, utils::type.convert, classes = "character",
how = "replace", as.is = TRUE)
return(x)
}
d <- data.frame(char = letters[1:5],
fake_char = as.character(1:5),
fac = factor(1:5),
char_fac = factor(letters[1:5]),
num = 1:5, stringsAsFactors = FALSE)
sapply(d, class)
#> char fake_char fac char_fac num
#> "character" "character" "factor" "factor" "integer"
sapply(convert_types(d), class)
#> char fake_char fac char_fac num
#> "character" "integer" "factor" "factor" "integer"
在我的PC (R v.3.2.3)中,apply或sapply给出错误。Lapply效果很好。
dt[,2:4] <- lapply(dt[,2:4], function (x) as.factor(as.numeric(x)))
虽然你的问题严格是关于数字的,但在开始r时,有许多转换是难以理解的。我将致力于解决帮助的方法。这个问题和这个问题类似。
在R中,类型转换可能是一种痛苦,因为(1)因子不能直接转换为数字,它们需要首先转换为字符类,(2)日期是一种特殊情况,通常需要单独处理,(3)跨数据帧列的循环可能很棘手。幸运的是,“潮流宇宙”已经解决了大部分问题。
This solution uses mutate_each() to apply a function to all columns in a data frame. In this case, we want to apply the type.convert() function, which converts strings to numeric where it can. Because R loves factors (not sure why) character columns that should stay character get changed to factor. To fix this, the mutate_if() function is used to detect columns that are factors and change to character. Last, I wanted to show how lubridate can be used to change a timestamp in character class to date-time because this is also often a sticking block for beginners.
library(tidyverse)
library(lubridate)
# Recreate data that needs converted to numeric, date-time, etc
data_df
#> # A tibble: 5 × 9
#> TIMESTAMP SYMBOL EX PRICE SIZE COND BID BIDSIZ OFR
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2012-05-04 09:30:00 BAC T 7.8900 38538 F 7.89 523 7.90
#> 2 2012-05-04 09:30:01 BAC Z 7.8850 288 @ 7.88 61033 7.90
#> 3 2012-05-04 09:30:03 BAC X 7.8900 1000 @ 7.88 1974 7.89
#> 4 2012-05-04 09:30:07 BAC T 7.8900 19052 F 7.88 1058 7.89
#> 5 2012-05-04 09:30:08 BAC Y 7.8900 85053 F 7.88 108101 7.90
# Converting columns to numeric using "tidyverse"
data_df %>%
mutate_all(type.convert) %>%
mutate_if(is.factor, as.character) %>%
mutate(TIMESTAMP = as_datetime(TIMESTAMP, tz = Sys.timezone()))
#> # A tibble: 5 × 9
#> TIMESTAMP SYMBOL EX PRICE SIZE COND BID BIDSIZ OFR
#> <dttm> <chr> <chr> <dbl> <int> <chr> <dbl> <int> <dbl>
#> 1 2012-05-04 09:30:00 BAC T 7.890 38538 F 7.89 523 7.90
#> 2 2012-05-04 09:30:01 BAC Z 7.885 288 @ 7.88 61033 7.90
#> 3 2012-05-04 09:30:03 BAC X 7.890 1000 @ 7.88 1974 7.89
#> 4 2012-05-04 09:30:07 BAC T 7.890 19052 F 7.88 1058 7.89
#> 5 2012-05-04 09:30:08 BAC Y 7.890 85053 F 7.88 108101 7.90
考虑到可能存在char列,这是基于@Abdou在获取列类型的excel表格自动回答:
makenumcols<-function(df){
df<-as.data.frame(df)
df[] <- lapply(df, as.character)
cond <- apply(df, 2, function(x) {
x <- x[!is.na(x)]
all(suppressWarnings(!is.na(as.numeric(x))))
})
numeric_cols <- names(df)[cond]
df[,numeric_cols] <- sapply(df[,numeric_cols], as.numeric)
return(df)
}
df<-makenumcols(df)
要将字符转换为数字,您必须通过应用将其转换为因数
BankFinal1 <- transform(BankLoan, LoanApproval=as.factor(LoanApproval))
BankFinal1 <- transform(BankFinal1, LoanApp=as.factor(LoanApproval))
您必须用相同的数据创建两列,因为一列不能转换为数字。如果你做一次转换,它会给出如下错误
transform(BankData, LoanApp=as.numeric(LoanApproval))
警告信息: 在eval(替代(列表 (...)), `_ 数据”,parent.frame ()): 胁迫引入的NAs
所以,在做了两列相同的数据应用后
BankFinal1 <- transform(BankFinal1, LoanApp = as.numeric(LoanApp),
LoanApproval = as.numeric(LoanApproval))
它将成功地将字符转换为数字
如果数据帧有多种类型的列,一些字符,一些数字尝试以下转换列包含数值为数值:
for (i in 1:length(data[1,])){
if(length(as.numeric(data[,i][!is.na(data[,i])])[!is.na(as.numeric(data[,i][!is.na(data[,i])]))])==0){}
else {
data[,i]<-as.numeric(data[,i])
}
}
与hablar::转换
要轻松地将多个列转换为不同的数据类型,可以使用hablar::convert。简单的语法:df %>% convert(num(a))将列a从df转换为数值。
详细的例子
让我们将mtcars的所有列转换为字符。
df <- mtcars %>% mutate_all(as.character) %>% as_tibble()
> df
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 21 6 160 110 3.9 2.62 16.46 0 1 4 4
2 21 6 160 110 3.9 2.875 17.02 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
与hablar::转换:
library(hablar)
# Convert columns to integer, numeric and factor
df %>%
convert(int(cyl, vs),
num(disp:wt),
fct(gear))
结果:
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <int> <chr> <fct> <chr>
1 21 6 160 110 3.9 2.62 16.46 0 1 4 4
2 21 6 160 110 3.9 2.88 17.02 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.44 1 0 3 1
如果您不关心保留因子,并希望将其应用到任何可以转换为数字的列,我使用下面的脚本。 如果df是您的原始数据框架,您可以使用下面的脚本。
df[] <- lapply(df, as.character)
df <- data.frame(lapply(df, function(x) ifelse(!is.na(as.numeric(x)), as.numeric(x), x)))
顺便说一句,我参考了谢恩和乔兰的解决方案