如何将数据帧列转换为数字类型?
当前回答
如果您不关心保留因子,并希望将其应用到任何可以转换为数字的列,我使用下面的脚本。 如果df是您的原始数据框架,您可以使用下面的脚本。
df[] <- lapply(df, as.character)
df <- data.frame(lapply(df, function(x) ifelse(!is.na(as.numeric(x)), as.numeric(x), x)))
顺便说一句,我参考了谢恩和乔兰的解决方案
其他回答
虽然其他人已经很好地讨论了这个话题,但我想补充一个额外的快速思考/提示。可以使用regexp提前检查字符是否可能仅由数字组成。
for(i in seq_along(names(df)){
potential_numcol[i] <- all(!grepl("[a-zA-Z]",d[,i]))
}
# and now just convert only the numeric ones
d <- sapply(d[,potential_numcol],as.numeric)
想要了解更多复杂的正则表达式,以及为什么要学习/体验它们的力量,请访问这个非常好的网站:http://regexr.com/
使用type.convert()和rapply()的通用方式:
convert_types <- function(x) {
stopifnot(is.list(x))
x[] <- rapply(x, utils::type.convert, classes = "character",
how = "replace", as.is = TRUE)
return(x)
}
d <- data.frame(char = letters[1:5],
fake_char = as.character(1:5),
fac = factor(1:5),
char_fac = factor(letters[1:5]),
num = 1:5, stringsAsFactors = FALSE)
sapply(d, class)
#> char fake_char fac char_fac num
#> "character" "character" "factor" "factor" "integer"
sapply(convert_types(d), class)
#> char fake_char fac char_fac num
#> "character" "integer" "factor" "factor" "integer"
虽然你的问题严格是关于数字的,但在开始r时,有许多转换是难以理解的。我将致力于解决帮助的方法。这个问题和这个问题类似。
在R中,类型转换可能是一种痛苦,因为(1)因子不能直接转换为数字,它们需要首先转换为字符类,(2)日期是一种特殊情况,通常需要单独处理,(3)跨数据帧列的循环可能很棘手。幸运的是,“潮流宇宙”已经解决了大部分问题。
This solution uses mutate_each() to apply a function to all columns in a data frame. In this case, we want to apply the type.convert() function, which converts strings to numeric where it can. Because R loves factors (not sure why) character columns that should stay character get changed to factor. To fix this, the mutate_if() function is used to detect columns that are factors and change to character. Last, I wanted to show how lubridate can be used to change a timestamp in character class to date-time because this is also often a sticking block for beginners.
library(tidyverse)
library(lubridate)
# Recreate data that needs converted to numeric, date-time, etc
data_df
#> # A tibble: 5 × 9
#> TIMESTAMP SYMBOL EX PRICE SIZE COND BID BIDSIZ OFR
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2012-05-04 09:30:00 BAC T 7.8900 38538 F 7.89 523 7.90
#> 2 2012-05-04 09:30:01 BAC Z 7.8850 288 @ 7.88 61033 7.90
#> 3 2012-05-04 09:30:03 BAC X 7.8900 1000 @ 7.88 1974 7.89
#> 4 2012-05-04 09:30:07 BAC T 7.8900 19052 F 7.88 1058 7.89
#> 5 2012-05-04 09:30:08 BAC Y 7.8900 85053 F 7.88 108101 7.90
# Converting columns to numeric using "tidyverse"
data_df %>%
mutate_all(type.convert) %>%
mutate_if(is.factor, as.character) %>%
mutate(TIMESTAMP = as_datetime(TIMESTAMP, tz = Sys.timezone()))
#> # A tibble: 5 × 9
#> TIMESTAMP SYMBOL EX PRICE SIZE COND BID BIDSIZ OFR
#> <dttm> <chr> <chr> <dbl> <int> <chr> <dbl> <int> <dbl>
#> 1 2012-05-04 09:30:00 BAC T 7.890 38538 F 7.89 523 7.90
#> 2 2012-05-04 09:30:01 BAC Z 7.885 288 @ 7.88 61033 7.90
#> 3 2012-05-04 09:30:03 BAC X 7.890 1000 @ 7.88 1974 7.89
#> 4 2012-05-04 09:30:07 BAC T 7.890 19052 F 7.88 1058 7.89
#> 5 2012-05-04 09:30:08 BAC Y 7.890 85053 F 7.88 108101 7.90
要将字符转换为数字,您必须通过应用将其转换为因数
BankFinal1 <- transform(BankLoan, LoanApproval=as.factor(LoanApproval))
BankFinal1 <- transform(BankFinal1, LoanApp=as.factor(LoanApproval))
您必须用相同的数据创建两列,因为一列不能转换为数字。如果你做一次转换,它会给出如下错误
transform(BankData, LoanApp=as.numeric(LoanApproval))
警告信息: 在eval(替代(列表 (...)), `_ 数据”,parent.frame ()): 胁迫引入的NAs
所以,在做了两列相同的数据应用后
BankFinal1 <- transform(BankFinal1, LoanApp = as.numeric(LoanApp),
LoanApproval = as.numeric(LoanApproval))
它将成功地将字符转换为数字
Df列出你的数据框架。X是要转换的df的一列
as.numeric(factor(df$x))
推荐文章
- 在R函数中指定可选参数的“正确”方法
- 如何在R中选择CRAN镜像
- dplyr包可以用于条件突变吗?
- 在Swift中转换Float为Int
- 一次加载多个包
- 将缺失的日期添加到熊猫数据框架中
- 如何防止ifelse()从日期对象转化为数字对象
- 如何将字符串转换为日期时间与格式规范在JavaScript?
- Pandas:索引数据帧时的多个条件-意外行为
- 使用sklearn缩放Pandas数据框架列
- read_csv . pandas中的Datetime dtypes
- 是否在函数中显式调用return
- 熊猫能自动从CSV文件中读取日期吗?
- 比较两个dataframe并并排输出它们的差异
- 从向量中移除NA值