如何按键对字典进行排序?

示例输入:

{2:3, 1:89, 4:5, 3:0}

期望的输出:

{1:89, 2:3, 3:0, 4:5}

当前回答

from operator import itemgetter
# if you would like to play with multiple dictionaries then here you go:
# Three dictionaries that are composed of first name and last name.
user = [
    {'fname': 'Mo', 'lname': 'Mahjoub'},
    {'fname': 'Abdo', 'lname': 'Al-hebashi'},
    {'fname': 'Ali', 'lname': 'Muhammad'}
]
#  This loop will sort by the first and the last names.
# notice that in a dictionary order doesn't matter. So it could put the first name first or the last name first. 
for k in sorted (user, key=itemgetter ('fname', 'lname')):
    print (k)

# This one will sort by the first name only.
for x in sorted (user, key=itemgetter ('fname')):
    print (x)

其他回答

来自Python的集合库文档:

>>> from collections import OrderedDict

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key -- OrderedDict(sorted(d.items()) also works
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

就问题的表述方式而言,这里的大多数答案都是正确的。

然而,考虑到事情应该如何真正完成,考虑到几十年的计算机科学,让我完全惊讶的是,这里实际上只有一个答案(来自GrantJ用户)建议使用排序关联容器(sortedcontainers),它基于插入点的键对元素进行排序。

这将避免每次调用sort(…)时对性能的巨大影响(至少O(N*log(N)),其中N是元素的数量(逻辑上,这适用于这里建议使用sort(…)的所有此类解决方案)。考虑到对于所有这样的解决方案,sort(…)将需要在每次通过添加/删除元素修改后,当需要以排序方式访问集合时调用…

以下是建议解决方案的性能:

from collections import OrderedDict
from sortedcontainers import SortedDict
import json

keys = np.random.rand(100000)
vals = np.random.rand(100000)

d = dict(zip(keys, vals))

timeit SortedDict(d)
#45.8 ms ± 780 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit sorted(d.items())
#91.9 ms ± 707 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit OrderedDict(sorted(d.items(), key=lambda x: x[0]))
#93.7 ms ± 1.52 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit dict(sorted(dic.items()))
#113 ms ± 824 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit OrderedDict(sorted(dic.items()))
#122 ms ± 2.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit json.dumps(d, sort_keys=True)
#259 ms ± 9.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

如我们所见,格兰特·詹克斯的解决方案是目前为止最快的。

Python字典是无序的。通常,这不是问题,因为最常见的用例是执行查找。

最简单的方法是创建一个集合。OrderedDict以排序顺序插入元素。

ordered_dict = collections.OrderedDict([(k, d[k]) for k in sorted(d.keys())])

如果需要迭代,就像上面其他人建议的那样,最简单的方法是迭代排序的键。的例子,

按键排序打印值:

# create the dict
d = {k1:v1, k2:v2,...}
# iterate by keys in sorted order
for k in sorted(d.keys()):
    value = d[k]
    # do something with k, value like print
    print k, value

获取按键排序的值列表:

values = [d[k] for k in sorted(d.keys())]

或者用熊猫,

演示:

>>> d={'B':1,'A':2,'C':3}
>>> df=pd.DataFrame(d,index=[0]).sort_index(axis=1)
   A  B  C
0  2  1  3
>>> df.to_dict('int')[0]
{'A': 2, 'B': 1, 'C': 3}
>>> 

See:

这方面的文档 整只熊猫的记录