我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
当前回答
(我原来的答案是错误的,对不起,数学不好,见下面的休息。)
这个怎么样?
前27位存储您所看到的最小数字,然后是与下一个数字的差值,编码如下:5位存储用于存储差值的位数,然后是差值。使用00000表示您再次看到了该数字。
这是因为插入的数字越多,数字之间的平均差值就越小,所以当你添加更多的数字时,你用更少的比特来存储差值。我想这叫做增量表。
我能想到的最糟糕的情况是所有数字都等距(以100为间隔),例如假设0是第一个数字:
000000000000000000000000000 00111 1100100
^^^^^^^^^^^^^
a million times
27 + 1,000,000 * (5+7) bits = ~ 427k
Reddit来拯救你!
如果你要做的只是把它们排序,这个问题就简单了。它需要122k(100万比特)来存储你看到的数字(如果看到0,则第0位,如果看到2300,则第2300位,等等。
读取数字,将它们存储在位域中,然后在保持计数的同时将位移出。
但是,你必须记住你看过多少。我受到上面的子列表答案的启发,想出了这个方案:
用2位或27位代替1位:
00表示你没有看到这个数字。 01表示你看过一次 1表示你看过,接下来的26位是看了多少次。
我认为这是可行的:如果没有重复,你就有一个244k的列表。 在最坏的情况下,你看到每个数字两次(如果你看到一个数字三次,它会缩短列表的其余部分),这意味着你不止一次看到了50,000个,你0次或1次看到了950,000个项目。
50,000 * 27 + 950,000 * 2 = 396.7k.
如果你使用以下编码,你可以做进一步的改进:
0表示你没有看到这个数字 10表示你看过一次 11是你计数的方式
这将导致平均280.7k的存储空间。
编辑:我周日早上的数学算错了。
最坏的情况是,我们两次看到50万个数字,所以数学就变成了:
500,000 *27 + 500,000 *2 = 1.77M
交替编码导致平均存储为
500,000 * 27 + 500,000 = 1.70M
: (
其他回答
假设这个任务是可能的。在输出之前,内存中会有一个百万个排序数字的表示。有多少种不同的表示法?由于可能有重复的数字,我们不能使用nCr(选择),但有一种叫做multichoose的操作,它适用于多集。
在0..99,999,999范围内有22e2436455种方法来选择一百万个数字。 这需要8,093,730位来表示每个可能的组合,或1,011,717字节。
所以理论上是可能的,如果你能想出一个合理(足够)的数字排序表。例如,一个疯狂的表示可能需要一个10MB的查找表或数千行代码。
但是,如果“1M RAM”意味着100万个字节,那么显然没有足够的空间。事实上,多5%的内存使它在理论上成为可能,这对我来说意味着表示必须非常有效,可能是不理智的。
If it is possible to read the input file more than once (your problem statement doesn't say it can't), the following should work. It is described in Benchley's book "Programming Perls." If we store each number in 8 bytes we can store 250,000 numbers in one megabyte. Use a program that makes 40 passes over the input file. On the first pass it reads into memory any integer between 0 and 249,999, sorts the (at most) 250,000 integers and writes them to the output file. The second pass sorts the integers from 250,000 to 499,999 and so on to the 40th pass, which sorts 9,750,000 to 9,999,999.
我有一台有1M内存的电脑,没有其他本地存储
另一种作弊方法:你可以使用非本地(网络)存储代替(你的问题不排除这一点),调用一个网络服务,它可以使用直接的基于磁盘的归并排序(或者只需要足够的RAM来在内存中排序,因为你只需要接受1M的数字),而不需要(公认非常巧妙的)已经给出的解决方案。
这可能是作弊,但不清楚你是在寻找一个现实问题的解决方案,还是一个让人扭曲规则的谜题……如果是后者,那么简单的欺骗可能比复杂但“真实”的解决方案(正如其他人指出的那样,后者只能用于可压缩输入)得到更好的结果。
如果我们对这些数字一无所知,我们就会受到以下约束:
我们需要在排序之前加载所有的数字, 这组数字是不可压缩的。
如果这些假设成立,则无法执行您的任务,因为您将需要至少26,575,425位的存储空间(3,321,929字节)。
你能跟我们说说你的数据吗?
(我原来的答案是错误的,对不起,数学不好,见下面的休息。)
这个怎么样?
前27位存储您所看到的最小数字,然后是与下一个数字的差值,编码如下:5位存储用于存储差值的位数,然后是差值。使用00000表示您再次看到了该数字。
这是因为插入的数字越多,数字之间的平均差值就越小,所以当你添加更多的数字时,你用更少的比特来存储差值。我想这叫做增量表。
我能想到的最糟糕的情况是所有数字都等距(以100为间隔),例如假设0是第一个数字:
000000000000000000000000000 00111 1100100
^^^^^^^^^^^^^
a million times
27 + 1,000,000 * (5+7) bits = ~ 427k
Reddit来拯救你!
如果你要做的只是把它们排序,这个问题就简单了。它需要122k(100万比特)来存储你看到的数字(如果看到0,则第0位,如果看到2300,则第2300位,等等。
读取数字,将它们存储在位域中,然后在保持计数的同时将位移出。
但是,你必须记住你看过多少。我受到上面的子列表答案的启发,想出了这个方案:
用2位或27位代替1位:
00表示你没有看到这个数字。 01表示你看过一次 1表示你看过,接下来的26位是看了多少次。
我认为这是可行的:如果没有重复,你就有一个244k的列表。 在最坏的情况下,你看到每个数字两次(如果你看到一个数字三次,它会缩短列表的其余部分),这意味着你不止一次看到了50,000个,你0次或1次看到了950,000个项目。
50,000 * 27 + 950,000 * 2 = 396.7k.
如果你使用以下编码,你可以做进一步的改进:
0表示你没有看到这个数字 10表示你看过一次 11是你计数的方式
这将导致平均280.7k的存储空间。
编辑:我周日早上的数学算错了。
最坏的情况是,我们两次看到50万个数字,所以数学就变成了:
500,000 *27 + 500,000 *2 = 1.77M
交替编码导致平均存储为
500,000 * 27 + 500,000 = 1.70M
: (