我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。

下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。

下面是主要的测试程序(pitimes.c):

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

内联汇编的东西(fldpi.c)只适用于x86和x64系统:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

和一个构建脚本,构建我正在测试的所有配置(build.sh):

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。


当前回答

双打:

4.0 * (4.0 * Math.Atan(0.2) - Math.Atan(1.0 / 239.0))

这将精确到小数点后14位,足以填充双精度(不准确可能是因为弧切线中的其余小数被截断了)。

还有Seth,是3.141592653589793238463,不是64。

其他回答

下面是我在高中时学过的计算圆周率的技巧。

我之所以分享它,是因为我认为它足够简单,任何人都可以无限期地记住它,而且它教会了你“蒙特卡罗”方法的概念——这是一种统计方法,可以得到答案,这些答案不会立即通过随机过程演绎出来。

画一个正方形,在这个正方形内画一个象限(半圆的四分之一)(一个半径等于正方形边的象限,这样它就能尽可能多地填充正方形)

现在向正方形投掷飞镖,并记录飞镖落在何处——也就是说,在正方形内任意选择一个点。当然,它落在了正方形内部,但它落在半圆内部吗?记录这个事实。

重复此过程多次,你会发现半圆内的点数量与抛出的总数量之比为x。

由于正方形的面积是r乘以r,可以推导出半圆的面积是x乘以r乘以r(即x乘以r的平方)。因此x乘以4会得到。

这不是一个快速使用的方法。但这是蒙特卡罗方法的一个很好的例子。如果你环顾四周,你可能会发现许多超出你计算能力的问题都可以用这种方法来解决。

实际上,有一本书专门介绍了π的快速计算方法:Jonathan和Peter Borwein写的《π和AGM》(在亚马逊上可以买到)。

我对年度股东大会和相关算法进行了相当多的研究:这非常有趣(尽管有时并非微不足道)。

请注意,要实现大多数现代算法来计算\pi,您将需要一个多精度算术库(GMP是一个很好的选择,尽管距离我上次使用它已经有一段时间了)。

最佳算法的时间复杂度为O(M(n)log(n)),其中M(n)是使用基于fft算法对两个n位整数(M(n)=O(n log(n) log(log(n)))相乘的时间复杂度,通常在计算\pi数字时需要fft算法,GMP中实现了该算法。

请注意,即使算法背后的数学可能并不简单,算法本身通常是几行伪代码,它们的实现通常非常简单(如果您选择不编写自己的多精度算术:-))。

我认为圆周率的值是圆的周长和半径之比。

它可以通过常规的数学计算简单地实现

在过去,由于字的大小很小,浮点运算很慢或者根本不存在,我们常常这样做:

/* Return approximation of n * PI; n is integer */
#define pi_times(n) (((n) * 22) / 7)

对于不需要很高精度的应用程序(例如电子游戏),这是非常快速和准确的。

我总是使用acos(-1),而不是将π定义为常数。