我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。
下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。
下面是主要的测试程序(pitimes.c):
#include <math.h>
#include <stdio.h>
#include <time.h>
#define ITERS 10000000
#define TESTWITH(x) { \
diff = 0.0; \
time1 = clock(); \
for (i = 0; i < ITERS; ++i) \
diff += (x) - M_PI; \
time2 = clock(); \
printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1)); \
}
static inline double
diffclock(clock_t time1, clock_t time0)
{
return (double) (time1 - time0) / CLOCKS_PER_SEC;
}
int
main()
{
int i;
clock_t time1, time2;
double diff;
/* Warmup. The atan2 case catches GCC's atan folding (which would
* optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
* is not used. */
TESTWITH(4 * atan(1))
TESTWITH(4 * atan2(1, 1))
#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
extern double fldpi();
TESTWITH(fldpi())
#endif
/* Actual tests start here. */
TESTWITH(atan2(0, -1))
TESTWITH(acos(-1))
TESTWITH(2 * asin(1))
TESTWITH(4 * atan2(1, 1))
TESTWITH(4 * atan(1))
return 0;
}
内联汇编的东西(fldpi.c)只适用于x86和x64系统:
double
fldpi()
{
double pi;
asm("fldpi" : "=t" (pi));
return pi;
}
和一个构建脚本,构建我正在测试的所有配置(build.sh):
#!/bin/sh
gcc -O3 -Wall -c -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c -m64 -o fldpi-64.o fldpi.c
gcc -O3 -Wall -ffast-math -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm
除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。
下面的内容精确地回答了如何以尽可能快的方式——以最少的计算工作量——完成这一任务。即使你不喜欢这个答案,你也不得不承认,这确实是求圆周率值最快的方法。
求圆周率的最快方法是:
选择你最喜欢的编程语言
加载它的数学库
发现圆周率已经在那里定义了——可以使用了!
以防你手边没有数学图书馆。
第二快的方法(更普遍的解决方案)是:
在互联网上查找圆周率,例如这里:
http://www.eveandersson.com/pi/digits/1000000(100万位数..你的浮点精度是多少?)
或者在这里:
http://3.141592653589793238462643383279502884197169399375105820974944592.com/
或者在这里:
http://en.wikipedia.org/wiki/Pi
它可以非常快速地找到您想要使用的任何精度算术所需要的数字,并且通过定义一个常量,您可以确保不会浪费宝贵的CPU时间。
这不仅是一个有点幽默的回答,而且在现实中,如果有人愿意在实际应用中计算圆周率的值。这将是对CPU时间的巨大浪费,不是吗?至少我没有看到重新计算这个的实际应用。
还要考虑到NASA只使用15位圆周率来计算星际旅行:
TL;博士:https://twitter.com/Rainmaker1973/status/1463477499434835968
喷气推进实验室解释:https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
亲爱的主持人:请注意,OP问:“最快的方法来获得PI的值”
在编译时用D计算PI。
(摘自DSource.org)
/** Calculate pi at compile time
*
* Compile with dmd -c pi.d
*/
module calcpi;
import meta.math;
import meta.conv;
/** real evaluateSeries!(real x, real metafunction!(real y, int n) term)
*
* Evaluate a power series at compile time.
*
* Given a metafunction of the form
* real term!(real y, int n),
* which gives the nth term of a convergent series at the point y
* (where the first term is n==1), and a real number x,
* this metafunction calculates the infinite sum at the point x
* by adding terms until the sum doesn't change any more.
*/
template evaluateSeries(real x, alias term, int n=1, real sumsofar=0.0)
{
static if (n>1 && sumsofar == sumsofar + term!(x, n+1)) {
const real evaluateSeries = sumsofar;
} else {
const real evaluateSeries = evaluateSeries!(x, term, n+1, sumsofar + term!(x, n));
}
}
/*** Calculate atan(x) at compile time.
*
* Uses the Maclaurin formula
* atan(z) = z - z^3/3 + Z^5/5 - Z^7/7 + ...
*/
template atan(real z)
{
const real atan = evaluateSeries!(z, atanTerm);
}
template atanTerm(real x, int n)
{
const real atanTerm = (n & 1 ? 1 : -1) * pow!(x, 2*n-1)/(2*n-1);
}
/// Machin's formula for pi
/// pi/4 = 4 atan(1/5) - atan(1/239).
pragma(msg, "PI = " ~ fcvt!(4.0 * (4*atan!(1/5.0) - atan!(1/239.0))) );
更好的方法
要获得标准常数(如pi)或标准概念的输出,我们应该首先使用所使用语言中可用的内置方法。它将以最快和最好的方式返回一个值。我正在使用python以最快的方式运行,以获得圆周率的值。
数学库的PI变量。数学库将变量pi存储为常数。
math_pi.py
import math
print math.pi
使用linux /usr/bin/time -v python math_pi.py的time工具运行脚本
输出:
Command being timed: "python math_pi.py"
User time (seconds): 0.01
System time (seconds): 0.01
Percent of CPU this job got: 91%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03
用arccos的数学方法
acos_pi.py
import math
print math.acos(-1)
使用linux /usr/bin/time -v python acos_pi.py的time工具运行脚本
输出:
Command being timed: "python acos_pi.py"
User time (seconds): 0.02
System time (seconds): 0.01
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03
使用BBP公式
bbp_pi.py
from decimal import Decimal, getcontext
getcontext().prec=100
print sum(1/Decimal(16)**k *
(Decimal(4)/(8*k+1) -
Decimal(2)/(8*k+4) -
Decimal(1)/(8*k+5) -
Decimal(1)/(8*k+6)) for k in range(100))
使用linux /usr/bin/time -v python bbp_pi.py的time工具运行脚本
输出:
Command being timed: "python c.py"
User time (seconds): 0.05
System time (seconds): 0.01
Percent of CPU this job got: 98%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.06
因此,最好的方法是使用语言提供的内置方法,因为它们是获得输出的最快和最好的方法。在python中使用math.pi
下面的内容精确地回答了如何以尽可能快的方式——以最少的计算工作量——完成这一任务。即使你不喜欢这个答案,你也不得不承认,这确实是求圆周率值最快的方法。
求圆周率的最快方法是:
选择你最喜欢的编程语言
加载它的数学库
发现圆周率已经在那里定义了——可以使用了!
以防你手边没有数学图书馆。
第二快的方法(更普遍的解决方案)是:
在互联网上查找圆周率,例如这里:
http://www.eveandersson.com/pi/digits/1000000(100万位数..你的浮点精度是多少?)
或者在这里:
http://3.141592653589793238462643383279502884197169399375105820974944592.com/
或者在这里:
http://en.wikipedia.org/wiki/Pi
它可以非常快速地找到您想要使用的任何精度算术所需要的数字,并且通过定义一个常量,您可以确保不会浪费宝贵的CPU时间。
这不仅是一个有点幽默的回答,而且在现实中,如果有人愿意在实际应用中计算圆周率的值。这将是对CPU时间的巨大浪费,不是吗?至少我没有看到重新计算这个的实际应用。
还要考虑到NASA只使用15位圆周率来计算星际旅行:
TL;博士:https://twitter.com/Rainmaker1973/status/1463477499434835968
喷气推进实验室解释:https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
亲爱的主持人:请注意,OP问:“最快的方法来获得PI的值”