我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。

下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。

下面是主要的测试程序(pitimes.c):

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

内联汇编的东西(fldpi.c)只适用于x86和x64系统:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

和一个构建脚本,构建我正在测试的所有配置(build.sh):

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。


当前回答

在编译时用D计算PI。

(摘自DSource.org)

/** Calculate pi at compile time
 *
 * Compile with dmd -c pi.d
 */
module calcpi;

import meta.math;
import meta.conv;

/** real evaluateSeries!(real x, real metafunction!(real y, int n) term)
 *
 * Evaluate a power series at compile time.
 *
 * Given a metafunction of the form
 *  real term!(real y, int n),
 * which gives the nth term of a convergent series at the point y
 * (where the first term is n==1), and a real number x,
 * this metafunction calculates the infinite sum at the point x
 * by adding terms until the sum doesn't change any more.
 */
template evaluateSeries(real x, alias term, int n=1, real sumsofar=0.0)
{
  static if (n>1 && sumsofar == sumsofar + term!(x, n+1)) {
     const real evaluateSeries = sumsofar;
  } else {
     const real evaluateSeries = evaluateSeries!(x, term, n+1, sumsofar + term!(x, n));
  }
}

/*** Calculate atan(x) at compile time.
 *
 * Uses the Maclaurin formula
 *  atan(z) = z - z^3/3 + Z^5/5 - Z^7/7 + ...
 */
template atan(real z)
{
    const real atan = evaluateSeries!(z, atanTerm);
}

template atanTerm(real x, int n)
{
    const real atanTerm =  (n & 1 ? 1 : -1) * pow!(x, 2*n-1)/(2*n-1);
}

/// Machin's formula for pi
/// pi/4 = 4 atan(1/5) - atan(1/239).
pragma(msg, "PI = " ~ fcvt!(4.0 * (4*atan!(1/5.0) - atan!(1/239.0))) );

其他回答

使用machine -like公式

176 * arctan (1/57) + 28 * arctan (1/239) - 48 * arctan (1/682) + 96 * arctan(1/12943) 

[; \left( 176 \arctan \frac{1}{57} + 28 \arctan \frac{1}{239} - 48 \arctan \frac{1}{682} + 96 \arctan \frac{1}{12943}\right) ;], for you TeX the World people.

在Scheme中实现,例如:

(+ (- (+ (* 176 (atan(第57 / 1)))(* (atan (28 / 1 239))) (* 48 (atan (1 / 682))) (* 96 (12943 atan (/ 1))))

双打:

4.0 * (4.0 * Math.Atan(0.2) - Math.Atan(1.0 / 239.0))

这将精确到小数点后14位,足以填充双精度(不准确可能是因为弧切线中的其余小数被截断了)。

还有Seth,是3.141592653589793238463,不是64。

实际上,有一本书专门介绍了π的快速计算方法:Jonathan和Peter Borwein写的《π和AGM》(在亚马逊上可以买到)。

我对年度股东大会和相关算法进行了相当多的研究:这非常有趣(尽管有时并非微不足道)。

请注意,要实现大多数现代算法来计算\pi,您将需要一个多精度算术库(GMP是一个很好的选择,尽管距离我上次使用它已经有一段时间了)。

最佳算法的时间复杂度为O(M(n)log(n)),其中M(n)是使用基于fft算法对两个n位整数(M(n)=O(n log(n) log(log(n)))相乘的时间复杂度,通常在计算\pi数字时需要fft算法,GMP中实现了该算法。

请注意,即使算法背后的数学可能并不简单,算法本身通常是几行伪代码,它们的实现通常非常简单(如果您选择不编写自己的多精度算术:-))。

比GMPY2和MPmath内置更快:45分钟十亿:


我尝试了几种方法;Manchin, AGM和Chudnovsky兄弟。Chudnovsky和Binary Split是最快的: 我的github: https://github.com/Overboard-code/Pi-Pourri

我的Binary Split Chudnovsky的速度大约是内置gmpy2.const_pi()的两倍。MPmath.mp.pi()计算10亿需要50分钟,所以它几乎和Chudnovsky一样快。

我也非常感谢表演技巧。我不确定我的代码是否完美。它是100%准确的(所有公式都同意1亿),但也许可以更快?

我尝试了gmpy2.const_pi()到1亿个数字,在同一台机器上,Chudnovsky花了300秒,而Chudnovsky花了150秒。Pi.txt和pi2.txt是一样的。

在不到一个小时的时间里,我在我的旧i7 16GB笔记本电脑上输入了10亿个数字。

以下是我尝试过的12种方法中最快的一种:

class PiChudnovsky:
    """Version of Chudnovsky Bros using Binary Splitting 
        So far this is the winner for fastest time to a million digits on my older intel i7
    """
    A = mpz(13591409)
    B = mpz(545140134)
    C = mpz(640320)
    D = mpz(426880)
    E = mpz(10005)
    C3_24  = pow(C, mpz(3)) // mpz(24)
    #DIGITS_PER_TERM = math.log(53360 ** 3) / math.log(10)  #=> 14.181647462725476
    DIGITS_PER_TERM = 14.181647462725476
    MMILL = mpz(1000000)

    def __init__(self,ndigits):
        """ Initialization
        :param int ndigits: digits of PI computation
        """
        self.ndigits = ndigits
        self.n      = mpz(self.ndigits // self.DIGITS_PER_TERM + 1)
        self.prec   = mpz((self.ndigits + 1) * LOG2_10)
        self.one_sq = pow(mpz(10),mpz(2 * ndigits))
        self.sqrt_c = isqrt(self.E * self.one_sq)
        self.iters  = mpz(0)
        self.start_time = 0

    def compute(self):
        """ Computation """
        try:
            self.start_time = time.time()
            logging.debug("Starting {} formula to {:,} decimal places"
                .format(name,ndigits) )
            __, q, t = self.__bs(mpz(0), self.n)  # p is just for recursion
            pi = (q * self.D * self.sqrt_c) // t
            logging.debug('{} calulation Done! {:,} iterations and {:.2f} seconds.'
                .format( name, int(self.iters),time.time() - self.start_time))
            get_context().precision= int((self.ndigits+10) * LOG2_10)
            pi_s = pi.digits() # digits() gmpy2 creates a string 
            pi_o = pi_s[:1] + "." + pi_s[1:]
            return pi_o,int(self.iters),time.time() - self.start_time
        except Exception as e:
            print (e.message, e.args)
            raise

    def __bs(self, a, b):
        """ PQT computation by BSA(= Binary Splitting Algorithm)
        :param int a: positive integer
        :param int b: positive integer
        :return list [int p_ab, int q_ab, int t_ab]
        """
        try:
            self.iters += mpz(1)
            if self.iters % self.MMILL  == mpz(0):
                logging.debug('Chudnovsky ... {:,} iterations and {:.2f} seconds.'
                    .format( int(self.iters),time.time() - self.start_time))
            if a + mpz(1) == b:
                if a == mpz(0):
                    p_ab = q_ab = mpz(1)
                else:
                    p_ab = mpz((mpz(6) * a - mpz(5)) * (mpz(2) * a - mpz(1)) * (mpz(6) * a - mpz(1)))
                    q_ab = pow(a,mpz(3)) * self.C3_24
                t_ab = p_ab * (self.A + self.B * a)
                if a & 1:
                    t_ab *= mpz(-1)
            else:
                m = (a + b) // mpz(2)
                p_am, q_am, t_am = self.__bs(a, m)
                p_mb, q_mb, t_mb = self.__bs(m, b)
                p_ab = p_am * p_mb
                q_ab = q_am * q_mb
                t_ab = q_mb * t_am + p_am * t_mb
            return [p_ab, q_ab, t_ab]
        except Exception as e:
            print (e.message, e.args)
            raise

以下是在45分钟内输出的10亿位数:

python pi-pourri.py -v -d 1,000,000,000 -a 10 

[INFO] 2022-10-03 09:22:51,860 <module>: MainProcess Computing π to 1,000,000,000 digits.
[DEBUG] 2022-10-03 09:25:00,543 compute: MainProcess Starting   Chudnovsky brothers  1988 
    π = (Q(0, N) / 12T(0, N) + 12AQ(0, N))**(C**(3/2))
 formula to 1,000,000,000 decimal places
[DEBUG] 2022-10-03 09:25:04,995 __bs: MainProcess Chudnovsky ... 1,000,000 iterations and 4.45 seconds.
[DEBUG] 2022-10-03 09:25:10,836 __bs: MainProcess Chudnovsky ... 2,000,000 iterations and 10.29 seconds.
[DEBUG] 2022-10-03 09:25:18,227 __bs: MainProcess Chudnovsky ... 3,000,000 iterations and 17.68 seconds.
[DEBUG] 2022-10-03 09:25:24,512 __bs: MainProcess Chudnovsky ... 4,000,000 iterations and 23.97 seconds.
[DEBUG] 2022-10-03 09:25:35,670 __bs: MainProcess Chudnovsky ... 5,000,000 iterations and 35.13 seconds.
[DEBUG] 2022-10-03 09:25:41,376 __bs: MainProcess Chudnovsky ... 6,000,000 iterations and 40.83 seconds.
[DEBUG] 2022-10-03 09:25:49,238 __bs: MainProcess Chudnovsky ... 7,000,000 iterations and 48.69 seconds.
[DEBUG] 2022-10-03 09:25:55,646 __bs: MainProcess Chudnovsky ... 8,000,000 iterations and 55.10 seconds.
[DEBUG] 2022-10-03 09:26:15,043 __bs: MainProcess Chudnovsky ... 9,000,000 iterations and 74.50 seconds.
[DEBUG] 2022-10-03 09:26:21,437 __bs: MainProcess Chudnovsky ... 10,000,000 iterations and 80.89 seconds.
[DEBUG] 2022-10-03 09:26:26,587 __bs: MainProcess Chudnovsky ... 11,000,000 iterations and 86.04 seconds.
[DEBUG] 2022-10-03 09:26:34,777 __bs: MainProcess Chudnovsky ... 12,000,000 iterations and 94.23 seconds.
[DEBUG] 2022-10-03 09:26:41,231 __bs: MainProcess Chudnovsky ... 13,000,000 iterations and 100.69 seconds.
[DEBUG] 2022-10-03 09:26:52,972 __bs: MainProcess Chudnovsky ... 14,000,000 iterations and 112.43 seconds.
[DEBUG] 2022-10-03 09:26:59,517 __bs: MainProcess Chudnovsky ... 15,000,000 iterations and 118.97 seconds.
[DEBUG] 2022-10-03 09:27:07,932 __bs: MainProcess Chudnovsky ... 16,000,000 iterations and 127.39 seconds.
[DEBUG] 2022-10-03 09:27:14,036 __bs: MainProcess Chudnovsky ... 17,000,000 iterations and 133.49 seconds.
[DEBUG] 2022-10-03 09:27:51,629 __bs: MainProcess Chudnovsky ... 18,000,000 iterations and 171.09 seconds.
[DEBUG] 2022-10-03 09:27:58,176 __bs: MainProcess Chudnovsky ... 19,000,000 iterations and 177.63 seconds.
[DEBUG] 2022-10-03 09:28:06,704 __bs: MainProcess Chudnovsky ... 20,000,000 iterations and 186.16 seconds.
[DEBUG] 2022-10-03 09:28:13,376 __bs: MainProcess Chudnovsky ... 21,000,000 iterations and 192.83 seconds.
[DEBUG] 2022-10-03 09:28:18,737 __bs: MainProcess Chudnovsky ... 22,000,000 iterations and 198.19 seconds.
[DEBUG] 2022-10-03 09:28:31,095 __bs: MainProcess Chudnovsky ... 23,000,000 iterations and 210.55 seconds.
[DEBUG] 2022-10-03 09:28:37,789 __bs: MainProcess Chudnovsky ... 24,000,000 iterations and 217.25 seconds.
[DEBUG] 2022-10-03 09:28:46,171 __bs: MainProcess Chudnovsky ... 25,000,000 iterations and 225.63 seconds.
[DEBUG] 2022-10-03 09:28:52,933 __bs: MainProcess Chudnovsky ... 26,000,000 iterations and 232.39 seconds.
[DEBUG] 2022-10-03 09:29:13,524 __bs: MainProcess Chudnovsky ... 27,000,000 iterations and 252.98 seconds.
[DEBUG] 2022-10-03 09:29:19,676 __bs: MainProcess Chudnovsky ... 28,000,000 iterations and 259.13 seconds.
[DEBUG] 2022-10-03 09:29:28,196 __bs: MainProcess Chudnovsky ... 29,000,000 iterations and 267.65 seconds.
[DEBUG] 2022-10-03 09:29:34,720 __bs: MainProcess Chudnovsky ... 30,000,000 iterations and 274.18 seconds.
[DEBUG] 2022-10-03 09:29:47,075 __bs: MainProcess Chudnovsky ... 31,000,000 iterations and 286.53 seconds.
[DEBUG] 2022-10-03 09:29:53,746 __bs: MainProcess Chudnovsky ... 32,000,000 iterations and 293.20 seconds.
[DEBUG] 2022-10-03 09:29:59,099 __bs: MainProcess Chudnovsky ... 33,000,000 iterations and 298.56 seconds.
[DEBUG] 2022-10-03 09:30:07,511 __bs: MainProcess Chudnovsky ... 34,000,000 iterations and 306.97 seconds.
[DEBUG] 2022-10-03 09:30:14,279 __bs: MainProcess Chudnovsky ... 35,000,000 iterations and 313.74 seconds.
[DEBUG] 2022-10-03 09:31:31,710 __bs: MainProcess Chudnovsky ... 36,000,000 iterations and 391.17 seconds.
[DEBUG] 2022-10-03 09:31:38,454 __bs: MainProcess Chudnovsky ... 37,000,000 iterations and 397.91 seconds.
[DEBUG] 2022-10-03 09:31:46,437 __bs: MainProcess Chudnovsky ... 38,000,000 iterations and 405.89 seconds.
[DEBUG] 2022-10-03 09:31:53,285 __bs: MainProcess Chudnovsky ... 39,000,000 iterations and 412.74 seconds.
[DEBUG] 2022-10-03 09:32:05,602 __bs: MainProcess Chudnovsky ... 40,000,000 iterations and 425.06 seconds.
[DEBUG] 2022-10-03 09:32:12,220 __bs: MainProcess Chudnovsky ... 41,000,000 iterations and 431.68 seconds.
[DEBUG] 2022-10-03 09:32:20,708 __bs: MainProcess Chudnovsky ... 42,000,000 iterations and 440.17 seconds.
[DEBUG] 2022-10-03 09:32:27,552 __bs: MainProcess Chudnovsky ... 43,000,000 iterations and 447.01 seconds.
[DEBUG] 2022-10-03 09:32:32,986 __bs: MainProcess Chudnovsky ... 44,000,000 iterations and 452.44 seconds.
[DEBUG] 2022-10-03 09:32:53,904 __bs: MainProcess Chudnovsky ... 45,000,000 iterations and 473.36 seconds.
[DEBUG] 2022-10-03 09:33:00,832 __bs: MainProcess Chudnovsky ... 46,000,000 iterations and 480.29 seconds.
[DEBUG] 2022-10-03 09:33:09,198 __bs: MainProcess Chudnovsky ... 47,000,000 iterations and 488.66 seconds.
[DEBUG] 2022-10-03 09:33:16,000 __bs: MainProcess Chudnovsky ... 48,000,000 iterations and 495.46 seconds.
[DEBUG] 2022-10-03 09:33:27,921 __bs: MainProcess Chudnovsky ... 49,000,000 iterations and 507.38 seconds.
[DEBUG] 2022-10-03 09:33:34,778 __bs: MainProcess Chudnovsky ... 50,000,000 iterations and 514.24 seconds.
[DEBUG] 2022-10-03 09:33:43,298 __bs: MainProcess Chudnovsky ... 51,000,000 iterations and 522.76 seconds.
[DEBUG] 2022-10-03 09:33:49,959 __bs: MainProcess Chudnovsky ... 52,000,000 iterations and 529.42 seconds.
[DEBUG] 2022-10-03 09:34:29,294 __bs: MainProcess Chudnovsky ... 53,000,000 iterations and 568.75 seconds.
[DEBUG] 2022-10-03 09:34:36,176 __bs: MainProcess Chudnovsky ... 54,000,000 iterations and 575.63 seconds.
[DEBUG] 2022-10-03 09:34:41,576 __bs: MainProcess Chudnovsky ... 55,000,000 iterations and 581.03 seconds.
[DEBUG] 2022-10-03 09:34:50,161 __bs: MainProcess Chudnovsky ... 56,000,000 iterations and 589.62 seconds.
[DEBUG] 2022-10-03 09:34:56,811 __bs: MainProcess Chudnovsky ... 57,000,000 iterations and 596.27 seconds.
[DEBUG] 2022-10-03 09:35:09,382 __bs: MainProcess Chudnovsky ... 58,000,000 iterations and 608.84 seconds.
[DEBUG] 2022-10-03 09:35:16,206 __bs: MainProcess Chudnovsky ... 59,000,000 iterations and 615.66 seconds.
[DEBUG] 2022-10-03 09:35:24,295 __bs: MainProcess Chudnovsky ... 60,000,000 iterations and 623.75 seconds.
[DEBUG] 2022-10-03 09:35:31,095 __bs: MainProcess Chudnovsky ... 61,000,000 iterations and 630.55 seconds.
[DEBUG] 2022-10-03 09:35:52,139 __bs: MainProcess Chudnovsky ... 62,000,000 iterations and 651.60 seconds.
[DEBUG] 2022-10-03 09:35:58,781 __bs: MainProcess Chudnovsky ... 63,000,000 iterations and 658.24 seconds.
[DEBUG] 2022-10-03 09:36:07,399 __bs: MainProcess Chudnovsky ... 64,000,000 iterations and 666.86 seconds.
[DEBUG] 2022-10-03 09:36:12,847 __bs: MainProcess Chudnovsky ... 65,000,000 iterations and 672.30 seconds.
[DEBUG] 2022-10-03 09:36:19,763 __bs: MainProcess Chudnovsky ... 66,000,000 iterations and 679.22 seconds.
[DEBUG] 2022-10-03 09:36:32,351 __bs: MainProcess Chudnovsky ... 67,000,000 iterations and 691.81 seconds.
[DEBUG] 2022-10-03 09:36:39,078 __bs: MainProcess Chudnovsky ... 68,000,000 iterations and 698.53 seconds.
[DEBUG] 2022-10-03 09:36:47,830 __bs: MainProcess Chudnovsky ... 69,000,000 iterations and 707.29 seconds.
[DEBUG] 2022-10-03 09:36:54,701 __bs: MainProcess Chudnovsky ... 70,000,000 iterations and 714.16 seconds.
[DEBUG] 2022-10-03 09:39:39,357 __bs: MainProcess Chudnovsky ... 71,000,000 iterations and 878.81 seconds.
[DEBUG] 2022-10-03 09:39:46,199 __bs: MainProcess Chudnovsky ... 72,000,000 iterations and 885.66 seconds.
[DEBUG] 2022-10-03 09:39:54,956 __bs: MainProcess Chudnovsky ... 73,000,000 iterations and 894.41 seconds.
[DEBUG] 2022-10-03 09:40:01,639 __bs: MainProcess Chudnovsky ... 74,000,000 iterations and 901.10 seconds.
[DEBUG] 2022-10-03 09:40:14,219 __bs: MainProcess Chudnovsky ... 75,000,000 iterations and 913.68 seconds.
[DEBUG] 2022-10-03 09:40:19,680 __bs: MainProcess Chudnovsky ... 76,000,000 iterations and 919.14 seconds.
[DEBUG] 2022-10-03 09:40:26,625 __bs: MainProcess Chudnovsky ... 77,000,000 iterations and 926.08 seconds.
[DEBUG] 2022-10-03 09:40:35,212 __bs: MainProcess Chudnovsky ... 78,000,000 iterations and 934.67 seconds.
[DEBUG] 2022-10-03 09:40:41,914 __bs: MainProcess Chudnovsky ... 79,000,000 iterations and 941.37 seconds.
[DEBUG] 2022-10-03 09:41:03,218 __bs: MainProcess Chudnovsky ... 80,000,000 iterations and 962.68 seconds.
[DEBUG] 2022-10-03 09:41:10,213 __bs: MainProcess Chudnovsky ... 81,000,000 iterations and 969.67 seconds.
[DEBUG] 2022-10-03 09:41:18,344 __bs: MainProcess Chudnovsky ... 82,000,000 iterations and 977.80 seconds.
[DEBUG] 2022-10-03 09:41:25,261 __bs: MainProcess Chudnovsky ... 83,000,000 iterations and 984.72 seconds.
[DEBUG] 2022-10-03 09:41:37,663 __bs: MainProcess Chudnovsky ... 84,000,000 iterations and 997.12 seconds.
[DEBUG] 2022-10-03 09:41:44,680 __bs: MainProcess Chudnovsky ... 85,000,000 iterations and 1004.14 seconds.
[DEBUG] 2022-10-03 09:41:53,411 __bs: MainProcess Chudnovsky ... 86,000,000 iterations and 1012.87 seconds.
[DEBUG] 2022-10-03 09:41:58,926 __bs: MainProcess Chudnovsky ... 87,000,000 iterations and 1018.38 seconds.
[DEBUG] 2022-10-03 09:42:05,858 __bs: MainProcess Chudnovsky ... 88,000,000 iterations and 1025.32 seconds.
[DEBUG] 2022-10-03 09:42:46,163 __bs: MainProcess Chudnovsky ... 89,000,000 iterations and 1065.62 seconds.
[DEBUG] 2022-10-03 09:42:53,054 __bs: MainProcess Chudnovsky ... 90,000,000 iterations and 1072.51 seconds.
[DEBUG] 2022-10-03 09:43:02,030 __bs: MainProcess Chudnovsky ... 91,000,000 iterations and 1081.49 seconds.
[DEBUG] 2022-10-03 09:43:09,192 __bs: MainProcess Chudnovsky ... 92,000,000 iterations and 1088.65 seconds.
[DEBUG] 2022-10-03 09:43:21,533 __bs: MainProcess Chudnovsky ... 93,000,000 iterations and 1100.99 seconds.
[DEBUG] 2022-10-03 09:43:28,643 __bs: MainProcess Chudnovsky ... 94,000,000 iterations and 1108.10 seconds.
[DEBUG] 2022-10-03 09:43:37,372 __bs: MainProcess Chudnovsky ... 95,000,000 iterations and 1116.83 seconds.
[DEBUG] 2022-10-03 09:43:44,558 __bs: MainProcess Chudnovsky ... 96,000,000 iterations and 1124.02 seconds.
[DEBUG] 2022-10-03 09:44:06,555 __bs: MainProcess Chudnovsky ... 97,000,000 iterations and 1146.01 seconds.
[DEBUG] 2022-10-03 09:44:12,220 __bs: MainProcess Chudnovsky ... 98,000,000 iterations and 1151.68 seconds.
[DEBUG] 2022-10-03 09:44:19,278 __bs: MainProcess Chudnovsky ... 99,000,000 iterations and 1158.74 seconds.
[DEBUG] 2022-10-03 09:44:28,323 __bs: MainProcess Chudnovsky ... 100,000,000 iterations and 1167.78 seconds.
[DEBUG] 2022-10-03 09:44:35,211 __bs: MainProcess Chudnovsky ... 101,000,000 iterations and 1174.67 seconds.
[DEBUG] 2022-10-03 09:44:48,331 __bs: MainProcess Chudnovsky ... 102,000,000 iterations and 1187.79 seconds.
[DEBUG] 2022-10-03 09:44:54,835 __bs: MainProcess Chudnovsky ... 103,000,000 iterations and 1194.29 seconds.
[DEBUG] 2022-10-03 09:45:03,869 __bs: MainProcess Chudnovsky ... 104,000,000 iterations and 1203.33 seconds.
[DEBUG] 2022-10-03 09:45:10,967 __bs: MainProcess Chudnovsky ... 105,000,000 iterations and 1210.42 seconds.
[DEBUG] 2022-10-03 09:46:32,760 __bs: MainProcess Chudnovsky ... 106,000,000 iterations and 1292.22 seconds.
[DEBUG] 2022-10-03 09:46:39,872 __bs: MainProcess Chudnovsky ... 107,000,000 iterations and 1299.33 seconds.
[DEBUG] 2022-10-03 09:46:48,948 __bs: MainProcess Chudnovsky ... 108,000,000 iterations and 1308.41 seconds.
[DEBUG] 2022-10-03 09:46:54,611 __bs: MainProcess Chudnovsky ... 109,000,000 iterations and 1314.07 seconds.
[DEBUG] 2022-10-03 09:47:01,727 __bs: MainProcess Chudnovsky ... 110,000,000 iterations and 1321.18 seconds.
[DEBUG] 2022-10-03 09:47:14,525 __bs: MainProcess Chudnovsky ... 111,000,000 iterations and 1333.98 seconds.
[DEBUG] 2022-10-03 09:47:21,682 __bs: MainProcess Chudnovsky ... 112,000,000 iterations and 1341.14 seconds.
[DEBUG] 2022-10-03 09:47:30,610 __bs: MainProcess Chudnovsky ... 113,000,000 iterations and 1350.07 seconds.
[DEBUG] 2022-10-03 09:47:37,176 __bs: MainProcess Chudnovsky ... 114,000,000 iterations and 1356.63 seconds.
[DEBUG] 2022-10-03 09:47:59,642 __bs: MainProcess Chudnovsky ... 115,000,000 iterations and 1379.10 seconds.
[DEBUG] 2022-10-03 09:48:06,702 __bs: MainProcess Chudnovsky ... 116,000,000 iterations and 1386.16 seconds.
[DEBUG] 2022-10-03 09:48:15,483 __bs: MainProcess Chudnovsky ... 117,000,000 iterations and 1394.94 seconds.
[DEBUG] 2022-10-03 09:48:22,537 __bs: MainProcess Chudnovsky ... 118,000,000 iterations and 1401.99 seconds.
[DEBUG] 2022-10-03 09:48:35,714 __bs: MainProcess Chudnovsky ... 119,000,000 iterations and 1415.17 seconds.
[DEBUG] 2022-10-03 09:48:41,321 __bs: MainProcess Chudnovsky ... 120,000,000 iterations and 1420.78 seconds.
[DEBUG] 2022-10-03 09:48:48,408 __bs: MainProcess Chudnovsky ... 121,000,000 iterations and 1427.87 seconds.
[DEBUG] 2022-10-03 09:48:57,138 __bs: MainProcess Chudnovsky ... 122,000,000 iterations and 1436.60 seconds.
[DEBUG] 2022-10-03 09:49:04,328 __bs: MainProcess Chudnovsky ... 123,000,000 iterations and 1443.79 seconds.
[DEBUG] 2022-10-03 09:49:46,274 __bs: MainProcess Chudnovsky ... 124,000,000 iterations and 1485.73 seconds.
[DEBUG] 2022-10-03 09:49:52,833 __bs: MainProcess Chudnovsky ... 125,000,000 iterations and 1492.29 seconds.
[DEBUG] 2022-10-03 09:50:01,786 __bs: MainProcess Chudnovsky ... 126,000,000 iterations and 1501.24 seconds.
[DEBUG] 2022-10-03 09:50:08,975 __bs: MainProcess Chudnovsky ... 127,000,000 iterations and 1508.43 seconds.
[DEBUG] 2022-10-03 09:50:21,850 __bs: MainProcess Chudnovsky ... 128,000,000 iterations and 1521.31 seconds.
[DEBUG] 2022-10-03 09:50:28,962 __bs: MainProcess Chudnovsky ... 129,000,000 iterations and 1528.42 seconds.
[DEBUG] 2022-10-03 09:50:34,594 __bs: MainProcess Chudnovsky ... 130,000,000 iterations and 1534.05 seconds.
[DEBUG] 2022-10-03 09:50:43,647 __bs: MainProcess Chudnovsky ... 131,000,000 iterations and 1543.10 seconds.
[DEBUG] 2022-10-03 09:50:50,724 __bs: MainProcess Chudnovsky ... 132,000,000 iterations and 1550.18 seconds.
[DEBUG] 2022-10-03 09:51:12,742 __bs: MainProcess Chudnovsky ... 133,000,000 iterations and 1572.20 seconds.
[DEBUG] 2022-10-03 09:51:19,799 __bs: MainProcess Chudnovsky ... 134,000,000 iterations and 1579.26 seconds.
[DEBUG] 2022-10-03 09:51:28,824 __bs: MainProcess Chudnovsky ... 135,000,000 iterations and 1588.28 seconds.
[DEBUG] 2022-10-03 09:51:35,324 __bs: MainProcess Chudnovsky ... 136,000,000 iterations and 1594.78 seconds.
[DEBUG] 2022-10-03 09:51:48,419 __bs: MainProcess Chudnovsky ... 137,000,000 iterations and 1607.88 seconds.
[DEBUG] 2022-10-03 09:51:55,634 __bs: MainProcess Chudnovsky ... 138,000,000 iterations and 1615.09 seconds.
[DEBUG] 2022-10-03 09:52:04,435 __bs: MainProcess Chudnovsky ... 139,000,000 iterations and 1623.89 seconds.
[DEBUG] 2022-10-03 09:52:11,583 __bs: MainProcess Chudnovsky ... 140,000,000 iterations and 1631.04 seconds.
[DEBUG] 2022-10-03 09:52:17,222 __bs: MainProcess Chudnovsky ... 141,000,000 iterations and 1636.68 seconds.
[DEBUG] 2022-10-03 10:02:43,939 compute: MainProcess    Chudnovsky brothers  1988 
    π = (Q(0, N) / 12T(0, N) + 12AQ(0, N))**(C**(3/2))
 calulation Done! 141,027,339 iterations and 2263.39 seconds.
[INFO] 2022-10-03 10:09:07,119 <module>: MainProcess Last 5 digits of π were 45519 as expected at offset 999,999,995
[INFO] 2022-10-03 10:09:07,119 <module>: MainProcess Calculated π to 1,000,000,000 digits using a formula of:
 10     Chudnovsky brothers  1988 
    π = (Q(0, N) / 12T(0, N) + 12AQ(0, N))**(C**(3/2))
 
[INFO] 2022-10-03 10:09:07,120 <module>: MainProcess Calculation took 141,027,339 iterations and 0:44:06.398345.

math_pi。Pi (b = 1000000) 快到一百万。大约快40倍。但它不能达到十亿,一百万是最多的数字。

GMPY内置看起来像:

python pi-pourri.py -v -d 1,000,000,000 -a 11
[INFO] 2022-10-03 14:33:34,729 <module>: MainProcess Computing π to 1,000,000,000 digits.
[DEBUG] 2022-10-03 14:33:34,729 compute: MainProcess Starting   const_pi() function from the gmpy2 library formula to 1,000,000,000 decimal places
[DEBUG] 2022-10-03 15:46:46,575 compute: MainProcess    const_pi() function from the gmpy2 library calulation Done! 1 iterations and 4391.85 seconds.
[INFO] 2022-10-03 15:46:46,575 <module>: MainProcess Last 5 digits of π were 45519 as expected at offset 999,999,995
[INFO] 2022-10-03 15:46:46,575 <module>: MainProcess Calculated π to 1,000,000,000 digits using a formula of:
 11     const_pi() function from the gmpy2 library 
[INFO] 2022-10-03 15:46:46,575 <module>: MainProcess Calculation took 1 iterations and 1:13:11.845652.

内置的MPmath几乎一样快。慢约12%(6分钟):

python pi-pourri.py -v -a 12 -d 1,000,000,000  
[INFO] 2022-10-04 09:10:37,085 <module>: MainProcess Computing π to 1,000,000,000 digits.
[DEBUG] 2022-10-04 09:10:37,085 compute: MainProcess Starting   mp.pi() function from the mpmath library formula to 1,000,000,000 decimal places
[DEBUG] 2022-10-04 10:01:25,321 compute: MainProcess    mp.pi() function from the mpmath library calulation Done! 1 iterations and 3048.22 seconds.
[INFO] 2022-10-04 10:01:25,338 <module>: MainProcess Last 5 digits of π were 45519 as expected at offset 999,999,995
[INFO] 2022-10-04 10:01:25,340 <module>: MainProcess Calculated π to 1,000,000,000 digits using a formula of:
 12     mp.pi() function from the mpmath library 
[INFO] 2022-10-04 10:01:25,343 <module>: MainProcess Calculation took 1 iterations and 0:50:48.250337.

蒙特卡罗方法,如前所述,应用了一些伟大的概念,但很明显,它不是最快的,不是从任何合理的标准来看。此外,这完全取决于你想要什么样的准确性。我所知道的最快的π是数字硬编码的π。看看圆周率和圆周率,有很多公式。

Here is a method that converges quickly — about 14 digits per iteration. PiFast, the current fastest application, uses this formula with the FFT. I'll just write the formula, since the code is straightforward. This formula was almost found by Ramanujan and discovered by Chudnovsky. It is actually how he calculated several billion digits of the number — so it isn't a method to disregard. The formula will overflow quickly and, since we are dividing factorials, it would be advantageous then to delay such calculations to remove terms.

在那里,

下面是Brent-Salamin算法。维基百科提到,当a和b“足够接近”时,(a + b)²/ 4t将是π的近似值。我不确定“足够接近”是什么意思,但从我的测试来看,一次迭代得到2位数字,两次得到7位,3次得到15位,当然这是双精度,所以它可能会有一个基于它的表示的错误,真实的计算可能会更准确。

let pi_2 iters =
    let rec loop_ a b t p i =
        if i = 0 then a,b,t,p
        else
            let a_n = (a +. b) /. 2.0 
            and b_n = sqrt (a*.b)
            and p_n = 2.0 *. p in
            let t_n = t -. (p *. (a -. a_n) *. (a -. a_n)) in
            loop_ a_n b_n t_n p_n (i - 1)
    in 
    let a,b,t,p = loop_ (1.0) (1.0 /. (sqrt 2.0)) (1.0/.4.0) (1.0) iters in
    (a +. b) *. (a +. b) /. (4.0 *. t)

最后,来点圆周率高尔夫(800位数字)怎么样?160个字符!

int a=10000,b,c=2800,d,e,f[2801],g;main(){for(;b-c;)f[b++]=a/5;for(;d=0,g=c*2;c-=14,printf("%.4d",e+d/a),e=d%a)for(b=c;d+=f[b]*a,f[b]=d%--g,d/=g--,--b;d*=b);}