我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。

下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。

下面是主要的测试程序(pitimes.c):

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

内联汇编的东西(fldpi.c)只适用于x86和x64系统:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

和一个构建脚本,构建我正在测试的所有配置(build.sh):

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。


当前回答

正好是3![弗林克教授(辛普森一家)]

开玩笑,但这里有一个在c#(。微软网络框架。

using System;
using System.Text;

class Program {
    static void Main(string[] args) {
        int Digits = 100;

        BigNumber x = new BigNumber(Digits);
        BigNumber y = new BigNumber(Digits);
        x.ArcTan(16, 5);
        y.ArcTan(4, 239);
        x.Subtract(y);
        string pi = x.ToString();
        Console.WriteLine(pi);
    }
}

public class BigNumber {
    private UInt32[] number;
    private int size;
    private int maxDigits;

    public BigNumber(int maxDigits) {
        this.maxDigits = maxDigits;
        this.size = (int)Math.Ceiling((float)maxDigits * 0.104) + 2;
        number = new UInt32[size];
    }
    public BigNumber(int maxDigits, UInt32 intPart)
        : this(maxDigits) {
        number[0] = intPart;
        for (int i = 1; i < size; i++) {
            number[i] = 0;
        }
    }
    private void VerifySameSize(BigNumber value) {
        if (Object.ReferenceEquals(this, value))
            throw new Exception("BigNumbers cannot operate on themselves");
        if (value.size != this.size)
            throw new Exception("BigNumbers must have the same size");
    }

    public void Add(BigNumber value) {
        VerifySameSize(value);

        int index = size - 1;
        while (index >= 0 && value.number[index] == 0)
            index--;

        UInt32 carry = 0;
        while (index >= 0) {
            UInt64 result = (UInt64)number[index] +
                            value.number[index] + carry;
            number[index] = (UInt32)result;
            if (result >= 0x100000000U)
                carry = 1;
            else
                carry = 0;
            index--;
        }
    }
    public void Subtract(BigNumber value) {
        VerifySameSize(value);

        int index = size - 1;
        while (index >= 0 && value.number[index] == 0)
            index--;

        UInt32 borrow = 0;
        while (index >= 0) {
            UInt64 result = 0x100000000U + (UInt64)number[index] -
                            value.number[index] - borrow;
            number[index] = (UInt32)result;
            if (result >= 0x100000000U)
                borrow = 0;
            else
                borrow = 1;
            index--;
        }
    }
    public void Multiply(UInt32 value) {
        int index = size - 1;
        while (index >= 0 && number[index] == 0)
            index--;

        UInt32 carry = 0;
        while (index >= 0) {
            UInt64 result = (UInt64)number[index] * value + carry;
            number[index] = (UInt32)result;
            carry = (UInt32)(result >> 32);
            index--;
        }
    }
    public void Divide(UInt32 value) {
        int index = 0;
        while (index < size && number[index] == 0)
            index++;

        UInt32 carry = 0;
        while (index < size) {
            UInt64 result = number[index] + ((UInt64)carry << 32);
            number[index] = (UInt32)(result / (UInt64)value);
            carry = (UInt32)(result % (UInt64)value);
            index++;
        }
    }
    public void Assign(BigNumber value) {
        VerifySameSize(value);
        for (int i = 0; i < size; i++) {
            number[i] = value.number[i];
        }
    }

    public override string ToString() {
        BigNumber temp = new BigNumber(maxDigits);
        temp.Assign(this);

        StringBuilder sb = new StringBuilder();
        sb.Append(temp.number[0]);
        sb.Append(System.Globalization.CultureInfo.CurrentCulture.NumberFormat.CurrencyDecimalSeparator);

        int digitCount = 0;
        while (digitCount < maxDigits) {
            temp.number[0] = 0;
            temp.Multiply(100000);
            sb.AppendFormat("{0:D5}", temp.number[0]);
            digitCount += 5;
        }

        return sb.ToString();
    }
    public bool IsZero() {
        foreach (UInt32 item in number) {
            if (item != 0)
                return false;
        }
        return true;
    }

    public void ArcTan(UInt32 multiplicand, UInt32 reciprocal) {
        BigNumber X = new BigNumber(maxDigits, multiplicand);
        X.Divide(reciprocal);
        reciprocal *= reciprocal;

        this.Assign(X);

        BigNumber term = new BigNumber(maxDigits);
        UInt32 divisor = 1;
        bool subtractTerm = true;
        while (true) {
            X.Divide(reciprocal);
            term.Assign(X);
            divisor += 2;
            term.Divide(divisor);
            if (term.IsZero())
                break;

            if (subtractTerm)
                this.Subtract(term);
            else
                this.Add(term);
            subtractTerm = !subtractTerm;
        }
    }
}

其他回答

BBP公式允许你计算第n位数字-以2为基数(或16)-甚至不需要麻烦之前的n-1位:)

我总是使用acos(-1),而不是将π定义为常数。

基本上是C版本的回形针优化器的答案,并且更加简化:

#include <stdio.h>
#include <math.h>

double calc_PI(int K) {
    static const int A = 545140134;
    static const int B = 13591409;
    static const int D = 640320;
    const double ID3 = 1.0 / ((double) D * (double) D * (double) D);
    double sum = 0.0;
    double b = sqrt(ID3);
    long long int p = 1;
    long long int a = B;
    sum += (double) p * (double) a * b;
    for (int k = 1; k < K; ++k) {
        a += A;
        b *= ID3;
        p *= (6 * k) * (6 * k - 1) * (6 * k - 2) * (6 * k - 3) * (6 * k - 4) * (6 * k - 5);
        p /= (3 * k) * (3 * k - 1) * (3 * k - 2) * k * k * k;
        p = -p;
        sum += (double) p * (double) a * b;
    }
    return 1.0 / (12 * sum);
}

int main() {
    for (int k = 1; k <= 5; ++k) {
        printf("k = %i, PI = %.16f\n", k, calc_PI(k));
    }
}

但为了更简化,这个算法采用Chudnovsky公式,如果你不太理解代码,我可以完全简化这个公式。

Summary: We will get a number from 1 to 5 and add it in to a function we will use to get PI. Then 3 numbers are given to you: 545140134 (A), 13591409 (B), 640320 (D). Then we will use D as a double multiplying itself 3 times into another double (ID3). We will then take the square root of ID3 into another double (b) and assign 2 numbers: 1 (p), the value of B (a). Take note that C is case-insensitive. Then a double (sum) will be created by multiplying the value's of p, a and b, all in doubles. Then a loop up until the number given for the function will start and add up A's value to a, b's value gets multiplied by ID3, p's value will be multiplied by multiple values that I hope you can understand and also gets divided by multiple values as well. The sum will add up by p, a and b once again and the loop will repeat until the value of the loop's number is greater or equal to 5. Later, the sum is multiplied by 12 and returned by the function giving us the result of PI.

好吧,这很长,但我想你会理解的……

下面的内容精确地回答了如何以尽可能快的方式——以最少的计算工作量——完成这一任务。即使你不喜欢这个答案,你也不得不承认,这确实是求圆周率值最快的方法。

求圆周率的最快方法是:

选择你最喜欢的编程语言 加载它的数学库 发现圆周率已经在那里定义了——可以使用了!

以防你手边没有数学图书馆。

第二快的方法(更普遍的解决方案)是:

在互联网上查找圆周率,例如这里:

http://www.eveandersson.com/pi/digits/1000000(100万位数..你的浮点精度是多少?)

或者在这里:

http://3.141592653589793238462643383279502884197169399375105820974944592.com/

或者在这里:

http://en.wikipedia.org/wiki/Pi

它可以非常快速地找到您想要使用的任何精度算术所需要的数字,并且通过定义一个常量,您可以确保不会浪费宝贵的CPU时间。

这不仅是一个有点幽默的回答,而且在现实中,如果有人愿意在实际应用中计算圆周率的值。这将是对CPU时间的巨大浪费,不是吗?至少我没有看到重新计算这个的实际应用。

还要考虑到NASA只使用15位圆周率来计算星际旅行:

TL;博士:https://twitter.com/Rainmaker1973/status/1463477499434835968 喷气推进实验室解释:https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/

亲爱的主持人:请注意,OP问:“最快的方法来获得PI的值”

实际上,有一本书专门介绍了π的快速计算方法:Jonathan和Peter Borwein写的《π和AGM》(在亚马逊上可以买到)。

我对年度股东大会和相关算法进行了相当多的研究:这非常有趣(尽管有时并非微不足道)。

请注意,要实现大多数现代算法来计算\pi,您将需要一个多精度算术库(GMP是一个很好的选择,尽管距离我上次使用它已经有一段时间了)。

最佳算法的时间复杂度为O(M(n)log(n)),其中M(n)是使用基于fft算法对两个n位整数(M(n)=O(n log(n) log(log(n)))相乘的时间复杂度,通常在计算\pi数字时需要fft算法,GMP中实现了该算法。

请注意,即使算法背后的数学可能并不简单,算法本身通常是几行伪代码,它们的实现通常非常简单(如果您选择不编写自己的多精度算术:-))。