我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。

下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。

下面是主要的测试程序(pitimes.c):

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

内联汇编的东西(fldpi.c)只适用于x86和x64系统:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

和一个构建脚本,构建我正在测试的所有配置(build.sh):

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。


当前回答

这是一个“经典”方法,非常容易实现。 这个在python(不是最快的语言)中的实现:

from math import pi
from time import time


precision = 10**6 # higher value -> higher precision
                  # lower  value -> higher speed

t = time()

calc = 0
for k in xrange(0, precision):
    calc += ((-1)**k) / (2*k+1.)
calc *= 4. # this is just a little optimization

t = time()-t

print "Calculated: %.40f" % calc
print "Constant pi: %.40f" % pi
print "Difference: %.40f" % abs(calc-pi)
print "Time elapsed: %s" % repr(t)

你可以在这里找到更多信息。

无论如何,在python中获得精确的圆周率值的最快方法是:

from gmpy import pi
print pi(3000) # the rule is the same as 
               # the precision on the previous code

下面是gpy pi方法的源代码,我认为在这种情况下,代码没有注释那么有用:

static char doc_pi[]="\
pi(n): returns pi with n bits of precision in an mpf object\n\
";

/* This function was originally from netlib, package bmp, by
 * Richard P. Brent. Paulo Cesar Pereira de Andrade converted
 * it to C and used it in his LISP interpreter.
 *
 * Original comments:
 * 
 *   sets mp pi = 3.14159... to the available precision.
 *   uses the gauss-legendre algorithm.
 *   this method requires time o(ln(t)m(t)), so it is slower
 *   than mppi if m(t) = o(t**2), but would be faster for
 *   large t if a faster multiplication algorithm were used
 *   (see comments in mpmul).
 *   for a description of the method, see - multiple-precision
 *   zero-finding and the complexity of elementary function
 *   evaluation (by r. p. brent), in analytic computational
 *   complexity (edited by j. f. traub), academic press, 1976, 151-176.
 *   rounding options not implemented, no guard digits used.
*/
static PyObject *
Pygmpy_pi(PyObject *self, PyObject *args)
{
    PympfObject *pi;
    int precision;
    mpf_t r_i2, r_i3, r_i4;
    mpf_t ix;

    ONE_ARG("pi", "i", &precision);
    if(!(pi = Pympf_new(precision))) {
        return NULL;
    }

    mpf_set_si(pi->f, 1);

    mpf_init(ix);
    mpf_set_ui(ix, 1);

    mpf_init2(r_i2, precision);

    mpf_init2(r_i3, precision);
    mpf_set_d(r_i3, 0.25);

    mpf_init2(r_i4, precision);
    mpf_set_d(r_i4, 0.5);
    mpf_sqrt(r_i4, r_i4);

    for (;;) {
        mpf_set(r_i2, pi->f);
        mpf_add(pi->f, pi->f, r_i4);
        mpf_div_ui(pi->f, pi->f, 2);
        mpf_mul(r_i4, r_i2, r_i4);
        mpf_sub(r_i2, pi->f, r_i2);
        mpf_mul(r_i2, r_i2, r_i2);
        mpf_mul(r_i2, r_i2, ix);
        mpf_sub(r_i3, r_i3, r_i2);
        mpf_sqrt(r_i4, r_i4);
        mpf_mul_ui(ix, ix, 2);
        /* Check for convergence */
        if (!(mpf_cmp_si(r_i2, 0) && 
              mpf_get_prec(r_i2) >= (unsigned)precision)) {
            mpf_mul(pi->f, pi->f, r_i4);
            mpf_div(pi->f, pi->f, r_i3);
            break;
        }
    }

    mpf_clear(ix);
    mpf_clear(r_i2);
    mpf_clear(r_i3);
    mpf_clear(r_i4);

    return (PyObject*)pi;
}

编辑:我在剪切和粘贴和缩进方面有一些问题,你可以在这里找到源代码。

其他回答

这个版本(在Delphi中)没有什么特别的,但它至少比Nick Hodge在他的博客上发布的版本快:)。在我的机器上,执行十亿次迭代大约需要16秒,得到的值为3.1415926525879(准确的部分用粗体显示)。

program calcpi;

{$APPTYPE CONSOLE}

uses
  SysUtils;

var
  start, finish: TDateTime;

function CalculatePi(iterations: integer): double;
var
  numerator, denominator, i: integer;
  sum: double;
begin
  {
  PI may be approximated with this formula:
  4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 .......)
  //}
  numerator := 1;
  denominator := 1;
  sum := 0;
  for i := 1 to iterations do begin
    sum := sum + (numerator/denominator);
    denominator := denominator + 2;
    numerator := -numerator;
  end;
  Result := 4 * sum;
end;

begin
  try
    start := Now;
    WriteLn(FloatToStr(CalculatePi(StrToInt(ParamStr(1)))));
    finish := Now;
    WriteLn('Seconds:' + FormatDateTime('hh:mm:ss.zz',finish-start));
  except
    on E:Exception do
      Writeln(E.Classname, ': ', E.Message);
  end;
end.

实际上,有一本书专门介绍了π的快速计算方法:Jonathan和Peter Borwein写的《π和AGM》(在亚马逊上可以买到)。

我对年度股东大会和相关算法进行了相当多的研究:这非常有趣(尽管有时并非微不足道)。

请注意,要实现大多数现代算法来计算\pi,您将需要一个多精度算术库(GMP是一个很好的选择,尽管距离我上次使用它已经有一段时间了)。

最佳算法的时间复杂度为O(M(n)log(n)),其中M(n)是使用基于fft算法对两个n位整数(M(n)=O(n log(n) log(log(n)))相乘的时间复杂度,通常在计算\pi数字时需要fft算法,GMP中实现了该算法。

请注意,即使算法背后的数学可能并不简单,算法本身通常是几行伪代码,它们的实现通常非常简单(如果您选择不编写自己的多精度算术:-))。

我总是使用acos(-1),而不是将π定义为常数。

下面是我在高中时学过的计算圆周率的技巧。

我之所以分享它,是因为我认为它足够简单,任何人都可以无限期地记住它,而且它教会了你“蒙特卡罗”方法的概念——这是一种统计方法,可以得到答案,这些答案不会立即通过随机过程演绎出来。

画一个正方形,在这个正方形内画一个象限(半圆的四分之一)(一个半径等于正方形边的象限,这样它就能尽可能多地填充正方形)

现在向正方形投掷飞镖,并记录飞镖落在何处——也就是说,在正方形内任意选择一个点。当然,它落在了正方形内部,但它落在半圆内部吗?记录这个事实。

重复此过程多次,你会发现半圆内的点数量与抛出的总数量之比为x。

由于正方形的面积是r乘以r,可以推导出半圆的面积是x乘以r乘以r(即x乘以r的平方)。因此x乘以4会得到。

这不是一个快速使用的方法。但这是蒙特卡罗方法的一个很好的例子。如果你环顾四周,你可能会发现许多超出你计算能力的问题都可以用这种方法来解决。

从圆面积计算π:-)

<input id="range" type="range" min="10" max="960" value="10" step="50" oninput="calcPi()"> <br> <div id="cont"></div> <script> function generateCircle(width) { var c = width/2; var delta = 1.0; var str = ""; var xCount = 0; for (var x=0; x <= width; x++) { for (var y = 0; y <= width; y++) { var d = Math.sqrt((x-c)*(x-c) + (y-c)*(y-c)); if (d > (width-1)/2) { str += '.'; } else { xCount++; str += 'o'; } str += "&nbsp;" } str += "\n"; } var pi = (xCount * 4) / (width * width); return [str, pi]; } function calcPi() { var e = document.getElementById("cont"); var width = document.getElementById("range").value; e.innerHTML = "<h4>Generating circle...</h4>"; setTimeout(function() { var circ = generateCircle(width); e.innerHTML = "<pre>" + "π = " + circ[1].toFixed(2) + "\n" + circ[0] +"</pre>"; }, 200); } calcPi(); </script>