我要证明log(n!) = Θ(n·log(n))
给出了一个提示,我应该用nn表示上界,用(n/2)(n/2)表示下界。这对我来说不是那么直观。为什么会这样呢?我可以清楚地看到如何将nn转换为n·log(n)(即方程两边都取对数),但这有点倒过来了。
解决这个问题的正确方法是什么?我要画递归树吗?没有什么递归的,所以这似乎不是一个可能的方法。
我要证明log(n!) = Θ(n·log(n))
给出了一个提示,我应该用nn表示上界,用(n/2)(n/2)表示下界。这对我来说不是那么直观。为什么会这样呢?我可以清楚地看到如何将nn转换为n·log(n)(即方程两边都取对数),但这有点倒过来了。
解决这个问题的正确方法是什么?我要画递归树吗?没有什么递归的,所以这似乎不是一个可能的方法。
当前回答
更进一步,米克·夏普留给你的
它的推导很简单: 参见http://en.wikipedia.org/wiki/Logarithm ->群论
log(n!)=log(n*(n-1)*(n-2)*…* 2*1)=log(n)+log(n-1)+…+ log(2) + log(1)
把n看成无限大。无穷减一是多少?还是- 2 ?等。
日志(inf)+日志(inf)+日志(inf)+…= inf*log(inf)
然后把无穷看做n。
其他回答
对于下界,
lg(n!) = lg(n)+lg(n-1)+...+lg(n/2)+...+lg2+lg1
>= lg(n/2)+lg(n/2)+...+lg(n/2)+ ((n-1)/2) lg 2 (leave last term lg1(=0); replace first n/2 terms as lg(n/2); replace last (n-1)/2 terms as lg2 which will make cancellation easier later)
= n/2 lg(n/2) + (n/2) lg 2 - 1/2 lg 2
= n/2 lg n - (n/2)(lg 2) + n/2 - 1/2
= n/2 lg n - 1/2
lg(n!) >= (1/2) (n lg n - 1)
结合两个边界:
1/2 (nlgn - 1) <= lg(n!) <= nlgn
通过选择大于(1/2)的下界常数,我们可以补偿括号内的-1。
因此lk(n!) = (nlgn)
更进一步,米克·夏普留给你的
它的推导很简单: 参见http://en.wikipedia.org/wiki/Logarithm ->群论
log(n!)=log(n*(n-1)*(n-2)*…* 2*1)=log(n)+log(n-1)+…+ log(2) + log(1)
把n看成无限大。无穷减一是多少?还是- 2 ?等。
日志(inf)+日志(inf)+日志(inf)+…= inf*log(inf)
然后把无穷看做n。
对不起,我不知道如何在stackoverflow上使用LaTeX语法。
参见斯特林近似:
-不,不,不。
后两项的重要性小于前一项。
谢谢,我发现你的答案令人信服,但在我的情况下,我必须使用Θ属性:
log(n!) = Θ(n·log n) => log(n!) = O(n log n) and log(n!) = Ω(n log n)
为了验证这个问题,我找到了这个网站,在那里你有所有的过程解释:http://www.mcs.sdsmt.edu/ecorwin/cs372/handouts/theta_n_factorial.htm