前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

对于Q2,这是一个比其他解决方案效率更低的解决方案,但仍然有O(N)个运行时和O(k)个空间。

这个想法是运行原始算法两次。在第一个例子中,你得到了缺失的总数,这给了你缺失数字的上界。我们称这个数为N,你知道这两个数的和是N,所以第一个数只能在[1,floor((N-1)/2)]区间内,而第二个数将在[floor(N/2)+1,N-1]区间内。

因此,再次循环所有数字,丢弃第一个间隔中不包括的所有数字。你可以记录它们的和。最后,你将知道丢失的两个数字中的一个,进而知道第二个数字。

我有一种感觉,这种方法可以被推广,也许在一次输入传递期间,多个搜索可以“并行”运行,但我还没有弄清楚如何做到这一点。

其他回答

我相信我有一个O(k)时间和O(log(k)空间算法,前提是你有任意大整数的下限(x)和log2(x)函数:

你有一个k位的长整数(因此是log8(k)空间),其中你加上x^2,其中x是你在袋子里找到的下一个数字:s=1^2+2^2+…这需要O(N)时间(这对面试官来说不是问题)。最后得到j= (log2(s))这是你要找的最大的数。然后s=s-j,重复上面的步骤:

for (i = 0 ; i < k ; i++)
{
  j = floor(log2(s));
  missing[i] = j;
  s -= j;
}

现在,对于2756位的整数,通常没有floor和log2函数,而是用于double。所以呢?简单地说,对于每2个字节(或1、3、4),您可以使用这些函数来获得所需的数字,但这增加了O(N)因素的时间复杂度

免责声明:我已经读了这个问题好几天了,但我的知识超出了我对数学的理解。

我试着用set来解决它:

arr=[1,2,4,5,7,8,10] # missing 3,6,9
NMissing=3
arr_origin = list(range(1,arr[-1]+1))

for i in range(NMissing):
      arr.append(arr[-1]) ##### assuming you do not delete the last one

arr=set(arr)
arr_origin=set(arr_origin)
missing=arr_origin-arr # 3 6 9

您还可以创建一个大小为last_element_in_the_existing_array + 1的布尔数组。

在for循环中,标记现有数组中存在的所有元素为true。

在另一个for循环中,打印包含false的元素的索引,即缺失的元素。

时间复杂度:O(last_element_in_the_existing_array)

空间复杂度:O(array.length)

一个非常简单的Q2解决方案,我很惊讶没有人回答。用Q1的方法求两个缺失数字的和。我们用S表示它,那么缺失的数字中一个比S/2小另一个比S/2大(胡说)将从1到S/2的所有数字相加,并将其与公式的结果进行比较(类似于Q1中的方法),以找到缺失数字之间的较低者。用S减去它,找出缺失的更大的数。

你可以试试布卢姆滤镜。将袋子中的每个数字插入到bloom中,然后遍历完整的1-k集,直到报告每个数字都没有找到。这可能不是在所有情况下都能找到答案,但可能是一个足够好的解决方案。