前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

你可以试试布卢姆滤镜。将袋子中的每个数字插入到bloom中,然后遍历完整的1-k集,直到报告每个数字都没有找到。这可能不是在所有情况下都能找到答案,但可能是一个足够好的解决方案。

其他回答

基于数字和的解决方案的问题是,它们没有考虑到存储和处理具有大指数的数字的成本……在实践中,为了使它适用于非常大的n,将使用大数库。我们可以分析这些算法的空间利用率。

我们可以分析sdcvvc和Dimitris Andreou算法的时间和空间复杂度。

储存:

l_j = ceil (log_2 (sum_{i=1}^n i^j))
l_j > log_2 n^j  (assuming n >= 0, k >= 0)
l_j > j log_2 n \in \Omega(j log n)

l_j < log_2 ((sum_{i=1}^n i)^j) + 1
l_j < j log_2 (n) + j log_2 (n + 1) - j log_2 (2) + 1
l_j < j log_2 n + j + c \in O(j log n)`

所以l_j \in \ (j log n)

所使用的总存储空间:\sum_{j=1}^k l_j \in \Theta(k^2 log n)

使用的空间:假设计算a^j需要ceil(log_2 j)时间,总时间:

t = k ceil(\sum_i=1^n log_2 (i)) = k ceil(log_2 (\prod_i=1^n (i)))
t > k log_2 (n^n + O(n^(n-1)))
t > k log_2 (n^n) = kn log_2 (n)  \in \Omega(kn log n)
t < k log_2 (\prod_i=1^n i^i) + 1
t < kn log_2 (n) + 1 \in O(kn log n)

总使用时间:\Theta(kn log n)

如果这个时间和空间是令人满意的,您可以使用一个简单的递归 算法。让b !I是袋子里的第I个元素,n个之前的数字 移除次数,k是移除次数。在Haskell语法中…

let
  -- O(1)
  isInRange low high v = (v >= low) && (v <= high)
  -- O(n - k)
  countInRange low high = sum $ map (fromEnum . isInRange low high . (!)b) [1..(n-k)]
  findMissing l low high krange
    -- O(1) if there is nothing to find.
    | krange=0 = l
    -- O(1) if there is only one possibility.
    | low=high = low:l
    -- Otherwise total of O(knlog(n)) time
    | otherwise =
       let
         mid = (low + high) `div` 2
         klow = countInRange low mid
         khigh = krange - klow
       in
         findMissing (findMissing low mid klow) (mid + 1) high khigh
in
  findMising 1 (n - k) k

使用的存储:O(k)用于列表,O(log(n))用于堆栈:O(k + log(n)) 该算法更直观,具有相同的时间复杂度,占用的空间更少。

假设一个ArrayList对象(myList)被这些数字填充,其中x和y两个数字缺失。所以可能的解决方案是:

int k = 1;
        while (k < 100) {
            if (!myList.contains(k)) {
                System.out.println("Missing No:" + k);
            }
            k++;
        }

谢谢你这个有趣的问题:

因为你让我想起了牛顿的工作,它真的可以解决这个问题

请参考牛顿恒等式

As变量的数量=方程的数量(必须为一致性)

我认为,对于这个问题,我们应该提高袋数的幂,以便创建不同的方程。

我不知道,但是,我相信如果有一个函数,比如f,我们要加上f(xi)

x1+x2+…+ xk = z1

x12 + x22 + ... + xk2 = z2

............

............

............

x1k + x2k + ... + xkk = XP

休息是一个不确定时间和空间复杂性的数学工作,但牛顿恒等式肯定会发挥重要作用。

我们不能用集合理论吗 .difference_update()或在这个问题方法中是否有线性代数的机会?

    //sort
    int missingNum[2];//missing 2 numbers- can be applied to more than 2
    int j = 0;    
    for(int i = 0; i < length - 1; i++){
        if(arr[i+1] - arr[i] > 1 ) {
            missingNum[j] = arr[i] + 1;
            j++;
        }
    }

正如@j_random_hacker所指出的,这与在O(n)个时间和O(1)个空间中寻找重复项非常相似,我的答案在这里也适用。

假设“袋子”由一个大小为N - k的基于1的数组a[]表示,我们可以在O(N)个时间和O(k)个额外空间内求解Qk。

首先,我们将数组A[]扩展k个元素,使它现在的大小为n,这是O(k)个额外空间。然后我们运行以下伪代码算法:

for i := n - k + 1 to n
    A[i] := A[1]
end for

for i := 1 to n - k
    while A[A[i]] != A[i] 
        swap(A[i], A[A[i]])
    end while
end for

for i := 1 to n
    if A[i] != i then 
        print i
    end if
end for

第一个循环初始化k个额外的条目,使其与数组中的第一个条目相同(这只是我们知道数组中已经存在的一个方便的值——在这一步之后,大小为N-k的初始数组中缺失的任何条目在扩展数组中仍然缺失)。

第二个循环排列扩展数组,如果元素x至少出现一次,那么其中一个元素将位于位置A[x]。

注意,尽管它有一个嵌套循环,但它仍然在O(N)时间内运行——只有当有一个i使a [i] != i时才会发生交换,并且每次交换设置至少一个元素使a [i] == i,而以前不是这样的。这意味着交换的总数(因此while循环体的执行总数)最多为N-1。

第三个循环打印数组i中没有被值i占用的索引——这意味着i一定是缺失的。