前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

我们可以使用下面的简单代码来查找重复的和缺失的值:

    int size = 8;
    int arr[] = {1, 2, 3, 5, 1, 3};
    int result[] = new int[size];

    for(int i =0; i < arr.length; i++)
    {
        if(result[arr[i]-1] == 1)
        {
            System.out.println("repeating: " + (arr[i]));
        }
        result[arr[i]-1]++;
    }

    for(int i =0; i < result.length; i++)
    {
        if(result[i] == 0)
        {
            System.out.println("missing: " + (i+1));
        }
    }

其他回答

试着找出从1到50的数的乘积:

令product, P1 = 1 × 2 × 3 × .............50

当你一个一个地把数提出来,把它们相乘,就得到乘积P2。但是这里少了两个数字,因此P2 < P1。

这两项的乘积,a x b = P1 - P2。

你已经知道这个和了,a + b = S1。

由上述两个方程,用二次方程求解a和b。A和b是你缺失的数。

要解决缺少2(和3)个数字的问题,您可以修改quickselect,它平均在O(n)内运行,如果分区是就地完成的,则使用恒定内存。

Partition the set with respect to a random pivot p into partitions l, which contain numbers smaller than the pivot, and r, which contain numbers greater than the pivot. Determine which partitions the 2 missing numbers are in by comparing the pivot value to the size of each partition (p - 1 - count(l) = count of missing numbers in l and n - count(r) - p = count of missing numbers in r) a) If each partition is missing one number, then use the difference of sums approach to find each missing number. (1 + 2 + ... + (p-1)) - sum(l) = missing #1 and ((p+1) + (p+2) ... + n) - sum(r) = missing #2 b) If one partition is missing both numbers and the partition is empty, then the missing numbers are either (p-1,p-2) or (p+1,p+2) depending on which partition is missing the numbers. If one partition is missing 2 numbers but is not empty, then recurse onto that partiton.

由于只缺少2个数字,该算法总是丢弃至少一个分区,因此保持了O(n)个快速选择的平均时间复杂度。类似地,当缺少3个数字时,该算法也会在每次传递中丢弃至少一个分区(因为当缺少2个数字时,最多只有1个分区包含多个缺少的数字)。然而,我不确定当添加更多缺失的数字时,性能会下降多少。

下面是一个不使用就地分区的实现,所以这个例子不满足空间要求,但它确实说明了算法的步骤:

<?php

  $list = range(1,100);
  unset($list[3]);
  unset($list[31]);

  findMissing($list,1,100);

  function findMissing($list, $min, $max) {
    if(empty($list)) {
      print_r(range($min, $max));
      return;
    }

    $l = $r = [];
    $pivot = array_pop($list);

    foreach($list as $number) {
      if($number < $pivot) {
        $l[] = $number;
      }
      else {
        $r[] = $number;
      }
    }

    if(count($l) == $pivot - $min - 1) {
      // only 1 missing number use difference of sums
      print array_sum(range($min, $pivot-1)) - array_sum($l) . "\n";
    }
    else if(count($l) < $pivot - $min) {
      // more than 1 missing number, recurse
      findMissing($l, $min, $pivot-1);
    }

    if(count($r) == $max - $pivot - 1) {
      // only 1 missing number use difference of sums
      print array_sum(range($pivot + 1, $max)) - array_sum($r) . "\n";
    } else if(count($r) < $max - $pivot) {
      // mroe than 1 missing number recurse
      findMissing($r, $pivot+1, $max);
    }
  }

Demo

一个非常简单的Q2解决方案,我很惊讶没有人回答。用Q1的方法求两个缺失数字的和。我们用S表示它,那么缺失的数字中一个比S/2小另一个比S/2大(胡说)将从1到S/2的所有数字相加,并将其与公式的结果进行比较(类似于Q1中的方法),以找到缺失数字之间的较低者。用S减去它,找出缺失的更大的数。

这是个很简单的问题

void findMissing(){
    bool record[N] = {0};
    for(int i = 0; i < N; i++){
        record[bag[i]-1] = 1;
    }
    for(int i = 0; i < N; i++){
        if(!record[i]) cout << i+1 << endl;
    }
}

O(n)时间和空间复杂度

非常好的问题。我会用Qk的集合差。很多编程语言甚至都支持它,比如Ruby:

missing = (1..100).to_a - bag

这可能不是最有效的解决方案,但如果我在这种情况下面临这样的任务(已知边界,低边界),这是我在现实生活中会使用的解决方案。如果数字集非常大,那么我当然会考虑一个更有效的算法,但在此之前,简单的解决方案对我来说已经足够了。