前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

您可以使用二分搜索来查找缺失(或连续)数字的间隔。运行时间应该是(num间隔)* log(平均间隔长度)* n。如果间隔不多,则很有用。

其他回答

你可以通过阅读Muthukrishnan的几页-数据流算法:谜题1:寻找缺失的数字来找到它。它准确地显示了您正在寻找的泛化。也许这就是面试官读到的内容,也是他提出这些问题的原因。


还请参阅sdcvvc的直接相关答案,其中还包括伪代码(万岁!没有必要阅读那些棘手的数学公式:)(谢谢,干得好!)

// Size of numbers
def n=100;

// A list of numbers that is missing k numbers.
def list;

// A map
def map = [:];

// Populate the map so that it contains all numbers.
for(int index=0; index<n; index++)
{
  map[index+1] = index+1;  
}

// Get size of list that is missing k numbers.
def size = list.size();

// Remove all numbers, that exists in list, from the map.
for(int index=0; index<size; index++)
{
  map.remove(list.get(index));  
}

// Content of map is missing numbers
println("Missing numbers: " + map);

不确定,这是否是最有效的解决方案,但我会遍历所有条目,并使用bitset来记住,设置了哪些数字,然后测试0位。

我喜欢简单的解决方案,我甚至相信,它可能比计算和,或平方和等更快。

我已经阅读了所有30个答案,并找到了最简单的一个,即使用100位数组是最好的。但正如问题所说,我们不能使用大小为N的数组,我将使用O(1)空间复杂度和k次迭代,即O(NK)时间复杂度来解决这个问题。

为了让解释更简单,假设给了我从1到15的数字,其中两个少了,即9和14,但我不知道。让包看起来像这样:

,1,2,12,4,7,5,10,11,13,15,3,6 [8].

我们知道每个数字在内部都是以位的形式表示的。 对于16之前的数字,我们只需要4位。对于10^9之前的数字,我们将需要32位。但我们先关注4位然后再推广它。

现在,假设我们有从1到15的所有数字,那么在内部,我们会有这样的数字(如果我们把它们排序):

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

但是现在少了两个数。所以我们的表示法看起来是这样的(为了理解,可以是任何顺序):

(2MSD|2LSD)
00|01
00|10
00|11
-----
01|00
01|01
01|10
01|11
-----
10|00
missing=(10|01) 
10|10
10|11
-----
11|00
11|01
missing=(11|10)
11|11

现在让我们创建一个大小为2的位数组,其中包含具有对应的两位最高位的数字的计数。即

= [__,__,__,__] 
   00,01,10,11

从左到右扫描袋子,填充上面的数组,使比特数组的每个bin都包含数字的计数。结果如下:

= [ 3, 4, 3, 3] 
   00,01,10,11

如果所有的数字都出现了,它看起来会是这样的:

= [ 3, 4, 4, 4] 
   00,01,10,11

因此,我们知道有两个数字缺失了:一个数字的最高两位有效位数是10,另一个数字的最高两位有效位数是11。现在再次扫描列表,并为下两位有效数字填写一个大小为2的位数组。这一次,只考虑前两位有效数字为10的元素。我们将有位数组为:

= [ 1, 0, 1, 1] 
   00,01,10,11

如果MSD=10的所有数字都存在,那么所有箱子中都有1个,但现在我们看到少了一个。因此,我们有MSD=10和LSD=01缺失的数字,即1001,即9。

类似地,如果我们再次扫描,但只考虑MSD=11的元素,我们得到MSD=11和LSD=10缺失,即1110,即14。

= [ 1, 0, 1, 1] 
   00,01,10,11

因此,我们可以在等量的空间中找到缺失的数字。我们可以推广到100 1000或10^9或任何一组数字。

参考资料:http://users.ece.utexas.edu/~adnan/afi-samples-new.pdf中的问题1.6

这里有一个解决方案,使用k位额外的存储空间,没有任何聪明的技巧,只是简单。执行时间O (n),额外空间O (k)。只是为了证明这个问题可以解决,而不需要先阅读解决方案或成为天才:

void puzzle (int* data, int n, bool* extra, int k)
{
    // data contains n distinct numbers from 1 to n + k, extra provides
    // space for k extra bits. 

    // Rearrange the array so there are (even) even numbers at the start
    // and (odd) odd numbers at the end.
    int even = 0, odd = 0;
    while (even + odd < n)
    {
        if (data [even] % 2 == 0) ++even;
        else if (data [n - 1 - odd] % 2 == 1) ++odd;
        else { int tmp = data [even]; data [even] = data [n - 1 - odd]; 
               data [n - 1 - odd] = tmp; ++even; ++odd; }
    }

    // Erase the lowest bits of all numbers and set the extra bits to 0.
    for (int i = even; i < n; ++i) data [i] -= 1;
    for (int i = 0; i < k; ++i) extra [i] = false;

    // Set a bit for every number that is present
    for (int i = 0; i < n; ++i)
    {
        int tmp = data [i];
        tmp -= (tmp % 2);
        if (i >= even) ++tmp;
        if (tmp <= n) data [tmp - 1] += 1; else extra [tmp - n - 1] = true;
    }

    // Print out the missing ones
    for (int i = 1; i <= n; ++i)
        if (data [i - 1] % 2 == 0) printf ("Number %d is missing\n", i);
    for (int i = n + 1; i <= n + k; ++i)
        if (! extra [i - n - 1]) printf ("Number %d is missing\n", i);

    // Restore the lowest bits again.
    for (int i = 0; i < n; ++i) {
        if (i < even) { if (data [i] % 2 != 0) data [i] -= 1; }
        else { if (data [i] % 2 == 0) data [i] += 1; }
    }
}