我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
这是使用numpy的Pearson Correlation函数的实现:
def corr(data1, data2):
"data1 & data2 should be numpy arrays."
mean1 = data1.mean()
mean2 = data2.mean()
std1 = data1.std()
std2 = data2.std()
# corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
return corr
其他回答
嗯,很多回复的代码都很长,很难读…
我建议在处理数组时使用numpy及其漂亮的特性:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
下面的代码是对该定义的直接解释:
import math
def average(x):
assert len(x) > 0
return float(sum(x)) / len(x)
def pearson_def(x, y):
assert len(x) == len(y)
n = len(x)
assert n > 0
avg_x = average(x)
avg_y = average(y)
diffprod = 0
xdiff2 = 0
ydiff2 = 0
for idx in range(n):
xdiff = x[idx] - avg_x
ydiff = y[idx] - avg_y
diffprod += xdiff * ydiff
xdiff2 += xdiff * xdiff
ydiff2 += ydiff * ydiff
return diffprod / math.sqrt(xdiff2 * ydiff2)
测试:
print pearson_def([1,2,3], [1,5,7])
返回
0.981980506062
这与Excel,这个计算器,SciPy(也是NumPy)一致,分别返回0.981980506和0.9819805060619657,和0.98198050606196574。
R:
> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805
编辑:修正了一个由评论者指出的错误。
一个替代方法可以是一个来自linreturn的本地scipy函数,它计算:
斜率:回归线的斜率 截距:回归线的截距 R-value:相关系数 p值:零假设为斜率为零的假设检验的双面p值 stderr:估计的标准错误
这里有一个例子:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
会回复你:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
您可能想知道如何在寻找特定方向的相关性(负相关或正相关)的上下文中解释您的概率。这是我写的一个函数。它甚至可能是正确的!
这是基于我从http://www.vassarstats.net/rsig.html和http://en.wikipedia.org/wiki/Student%27s_t_distribution上收集到的信息,感谢这里发布的其他答案。
# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
# (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# that there is no correlation in the given direction.
#
# direction:
# if positive, p is the probability that there is no positive correlation in
# the population sampled by X and Y
# if negative, p is the probability that there is no negative correlation
# if 0, p is the probability that there is no correlation in either direction
def probabilityNotCorrelated(X, Y, direction=0):
x = len(X)
if x != len(Y):
raise ValueError("variables not same len: " + str(x) + ", and " + \
str(len(Y)))
if x < 6:
raise ValueError("must have at least 6 samples, but have " + str(x))
(corr, prb_2_tail) = stats.pearsonr(X, Y)
if not direction:
return (corr, prb_2_tail)
prb_1_tail = prb_2_tail / 2
if corr * direction > 0:
return (corr, prb_1_tail)
return (corr, 1 - prb_1_tail)
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
y2 = y_pred.copy()
y2 -= y2.mean(axis=0); y2 /= y2.std(axis=0)
y1 = y_true.copy();
y1 -= y1.mean(axis=0); y1 /= y1.std(axis=0)
c = (y1*y2).mean().mean()# Correlation for rescaled matrices is just matrix product and average
return c