我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
嗯,很多回复的代码都很长,很难读…
我建议在处理数组时使用numpy及其漂亮的特性:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
其他回答
你可以用pandas.DataFrame这样做。相关系数:
import pandas as pd
a = [[1, 2, 3],
[5, 6, 9],
[5, 6, 11],
[5, 6, 13],
[5, 3, 13]]
df = pd.DataFrame(data=a)
df.corr()
这给了
0 1 2
0 1.000000 0.745601 0.916579
1 0.745601 1.000000 0.544248
2 0.916579 0.544248 1.000000
你可以看看scipy.stats:
from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)
>>>
Help on function pearsonr in module scipy.stats.stats:
pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
嗯,很多回复的代码都很长,很难读…
我建议在处理数组时使用numpy及其漂亮的特性:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
def correlation_score(y_true, y_pred):
"""Scores the predictions according to the competition rules.
It is assumed that the predictions are not constant.
Returns the average of each sample's Pearson correlation coefficient"""
y2 = y_pred.copy()
y2 -= y2.mean(axis=0); y2 /= y2.std(axis=0)
y1 = y_true.copy();
y1 -= y1.mean(axis=0); y1 /= y1.std(axis=0)
c = (y1*y2).mean().mean()# Correlation for rescaled matrices is just matrix product and average
return c
计算相关:
相关性-衡量两个不同变量的相似性
使用皮尔逊相关
from scipy.stats import pearsonr
# final_data is the dataframe with n set of columns
pearson_correlation = final_data.corr(method='pearson')
pearson_correlation
# print correlation of n*n column
使用斯皮尔曼相关
from scipy.stats import spearmanr
# final_data is the dataframe with n set of columns
spearman_correlation = final_data.corr(method='spearman')
spearman_correlation
# print correlation of n*n column
使用Kendall相关
kendall_correlation=final_data.corr(method='kendall')
kendall_correlation
推荐文章
- 为什么我得到“'str'对象没有属性'读取'”当尝试使用' json。载入字符串?
- 不区分大小写的列表排序,没有降低结果?
- 排序后的语法(key=lambda:…)
- 在烧瓶中返回HTTP状态代码201
- 使用python创建一个简单的XML文件
- APT命令行界面式的yes/no输入?
- 如何打印出状态栏和百分比?
- 在Python中获取大文件的MD5哈希值
- 在Python格式字符串中%s是什么意思?
- 如何循环通过所有但最后一项的列表?
- python用什么方法避免默认参数为空列表?
- ValueError: numpy。Ndarray大小改变,可能表示二进制不兼容。期望从C头得到88,从PyObject得到80
- Anaconda /conda -安装特定的软件包版本
- 我在哪里调用Keras的BatchNormalization函数?
- 打印测试执行时间并使用py.test锁定缓慢的测试