我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
一个替代方法可以是一个来自linreturn的本地scipy函数,它计算:
斜率:回归线的斜率 截距:回归线的截距 R-value:相关系数 p值:零假设为斜率为零的假设检验的双面p值 stderr:估计的标准错误
这里有一个例子:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
会回复你:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
其他回答
本文给出了一种基于稀疏向量的pearson相关的实现方法。这里的向量表示为(index, value)表示的元组列表。两个稀疏向量可以是不同的长度,但总的向量大小必须是相同的。这对于文本挖掘应用程序非常有用,其中向量大小非常大,因为大多数特征都是单词包,因此通常使用稀疏向量执行计算。
def get_pearson_corelation(self, first_feature_vector=[], second_feature_vector=[], length_of_featureset=0):
indexed_feature_dict = {}
if first_feature_vector == [] or second_feature_vector == [] or length_of_featureset == 0:
raise ValueError("Empty feature vectors or zero length of featureset in get_pearson_corelation")
sum_a = sum(value for index, value in first_feature_vector)
sum_b = sum(value for index, value in second_feature_vector)
avg_a = float(sum_a) / length_of_featureset
avg_b = float(sum_b) / length_of_featureset
mean_sq_error_a = sqrt((sum((value - avg_a) ** 2 for index, value in first_feature_vector)) + ((
length_of_featureset - len(first_feature_vector)) * ((0 - avg_a) ** 2)))
mean_sq_error_b = sqrt((sum((value - avg_b) ** 2 for index, value in second_feature_vector)) + ((
length_of_featureset - len(second_feature_vector)) * ((0 - avg_b) ** 2)))
covariance_a_b = 0
#calculate covariance for the sparse vectors
for tuple in first_feature_vector:
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
indexed_feature_dict[tuple[0]] = tuple[1]
count_of_features = 0
for tuple in second_feature_vector:
count_of_features += 1
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
if tuple[0] in indexed_feature_dict:
covariance_a_b += ((indexed_feature_dict[tuple[0]] - avg_a) * (tuple[1] - avg_b))
del (indexed_feature_dict[tuple[0]])
else:
covariance_a_b += (0 - avg_a) * (tuple[1] - avg_b)
for index in indexed_feature_dict:
count_of_features += 1
covariance_a_b += (indexed_feature_dict[index] - avg_a) * (0 - avg_b)
#adjust covariance with rest of vector with 0 value
covariance_a_b += (length_of_featureset - count_of_features) * -avg_a * -avg_b
if mean_sq_error_a == 0 or mean_sq_error_b == 0:
return -1
else:
return float(covariance_a_b) / (mean_sq_error_a * mean_sq_error_b)
单元测试:
def test_get_get_pearson_corelation(self):
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 3), 0.981980506062, 3, None, None)
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7), (4, 14)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 5), -0.0137089240555, 3, None, None)
Pearson相关性可以用numpy的corrcoef来计算。
import numpy
numpy.corrcoef(list1, list2)[0, 1]
如果你不喜欢安装scipy,我使用了这个快速的hack,稍微修改了Programming Collective Intelligence:
def pearsonr(x, y):
# Assume len(x) == len(y)
n = len(x)
sum_x = float(sum(x))
sum_y = float(sum(y))
sum_x_sq = sum(xi*xi for xi in x)
sum_y_sq = sum(yi*yi for yi in y)
psum = sum(xi*yi for xi, yi in zip(x, y))
num = psum - (sum_x * sum_y/n)
den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
if den == 0: return 0
return num / den
嗯,很多回复的代码都很长,很难读…
我建议在处理数组时使用numpy及其漂亮的特性:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
一个替代方法可以是一个来自linreturn的本地scipy函数,它计算:
斜率:回归线的斜率 截距:回归线的截距 R-value:相关系数 p值:零假设为斜率为零的假设检验的双面p值 stderr:估计的标准错误
这里有一个例子:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
会回复你:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录