我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
当前回答
偏见是我们的锚。对我们来说,这是一种设定底线的方式,我们不会低于这个标准。从图的角度来看,y=mx+b就像这个函数的y轴截距。
输出=输入乘以权重值并加上偏置值,然后应用激活函数。
其他回答
偏差不是一个神经网络项。这是一个通用的代数术语。
Y = M*X + C(直线方程)
现在如果C(Bias) = 0,那么这条线将始终经过原点,即(0,0),并且只依赖于一个参数,即M,这是斜率,所以我们有更少的东西可以处理。
C,也就是偏置取任意数,都能移动图形,因此能够表示更复杂的情况。
在逻辑回归中,目标的期望值通过链接函数进行转换,以限制其值为单位区间。这样,模型预测可以被视为主要结果概率,如下所示:
Wikipedia上的Sigmoid函数
这是神经网络映射中打开和关闭神经元的最后一个激活层。在这里,偏差也发挥了作用,它灵活地平移曲线,帮助我们绘制模型。
偏差有助于得到更好的方程。
想象一下,输入和输出就像一个函数y = ax + b,你需要在输入(x)和输出(y)之间画一条正确的线,以最小化每个点和直线之间的全局误差,如果你保持这样的方程y = ax,你将只有一个参数用于适应,即使你找到了最小化全局误差的最佳参数,它也会离你想要的值很远。
你可以说,偏差使方程更灵活,以适应最佳值
如果您正在处理图像,实际上可能更喜欢完全不使用偏置。从理论上讲,这样你的网络将更独立于数据量,比如图片是暗的,还是亮的和生动的。网络将通过研究你的数据中的相对性来学习它的工作。很多现代神经网络都利用了这一点。
对于其他有偏差的数据可能是至关重要的。这取决于你要处理什么类型的数据。如果您的信息是大小不变的——如果输入[1,0,0.1]应该会导致与输入[100,0,10]相同的结果,那么没有偏差可能会更好。
下面是一些进一步的插图,展示了一个简单的2层前馈神经网络在一个双变量回归问题上的结果。权重被随机初始化,并使用标准的ReLU激活。正如我前面的答案所总结的那样,没有偏差,relu网络无法在(0,0)处偏离零。
偏差决定了你的体重旋转的角度。
在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。
假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是
{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}
现在我们需要找到一个决策边界,理想的边界应该是:
看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。
但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:
现在边界平行于y轴。
我们要旋转边界。如何?
通过改变W。
因此,我们使用学习规则函数W'=W+P:
W'=W+P等价于W'=W+ bP,而b=1。
因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。
你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。