假设我在处理一些分类问题。(欺诈检测和评论垃圾邮件是我目前正在处理的两个问题,但我对一般的分类任务很好奇。)我如何知道我应该使用哪个分类器?决策树支持向量机贝叶斯神经网络再邻居q学习的遗传算法马尔可夫
假设我在处理一些分类问题。(欺诈检测和评论垃圾邮件是我目前正在处理的两个问题,但我对一般的分类任务很好奇。)我如何知道我应该使用哪个分类器?决策树支持向量机贝叶斯神经网络再邻居q学习的遗传算法马尔可夫
是否可以使用scikit-learn K-Means聚类来指定自己的距离函数?
我有一个80%类别变量的机器学习分类问题。如果我想使用一些分类器进行分类,我必须使用一个热编码吗?我可以将数据传递给分类器而不进行编码吗?我试图做以下的特征选择:I read the train fi
我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。
我如何初始化网络的权重和偏差(通过例如He或Xavier初始化)?
是否有一个经验法则来最好地将数据划分为训练集和验证集?平分妥当吗?或者相对于验证数据,拥有更多的训练数据是否有明显的优势(反之亦然)?或者这个选择很大程度上取决于应用程序?我主要分别使用80% / 2
如何将训练过的朴素贝叶斯分类器保存到磁盘并使用它来预测数据?我从scikit-learn网站上获得了以下示例程序:
当我用Theano或Tensorflow训练我的神经网络时,它们会在每个纪元报告一个名为“损失”的变量。我该如何解释这个变量呢?更高的损失是好是坏,或者它对我的神经网络的最终性能(准确性)意味着什么?
当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。那么,这两种方法有什么不同呢?
在人工智能和机器学习方面,监督学习和无监督学习的区别是什么?你能举个例子简单地解释一下吗?