什么时候应该使用.eval()?我知道它应该允许我“评估我的模型”。我如何在训练时关闭它?使用.eval()的示例训练代码。

我正在训练CNN按主题对文本进行分类。当我使用二进制交叉熵时,我得到~80%的准确率,使用分类交叉熵时,我得到~50%的准确率。我不明白为什么会这样。这是一个多类问题,这是不是意味着我必须使用分类交叉

假设我在处理一些分类问题。(欺诈检测和评论垃圾邮件是我目前正在处理的两个问题,但我对一般的分类任务很好奇。)我如何知道我应该使用哪个分类器?决策树支持向量机贝叶斯神经网络再邻居q学习的遗传算法马尔可夫

是否可以使用scikit-learn K-Means聚类来指定自己的距离函数?

我有一个80%类别变量的机器学习分类问题。如果我想使用一些分类器进行分类,我必须使用一个热编码吗?我可以将数据传递给分类器而不进行编码吗?我试图做以下的特征选择:I read the train fi

我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。

我如何初始化网络的权重和偏差(通过例如He或Xavier初始化)?

是否有一个经验法则来最好地将数据划分为训练集和验证集?平分妥当吗?或者相对于验证数据,拥有更多的训练数据是否有明显的优势(反之亦然)?或者这个选择很大程度上取决于应用程序?我主要分别使用80% / 2

如何将训练过的朴素贝叶斯分类器保存到磁盘并使用它来预测数据?我从scikit-learn网站上获得了以下示例程序:

当我用Theano或Tensorflow训练我的神经网络时,它们会在每个纪元报告一个名为“损失”的变量。我该如何解释这个变量呢?更高的损失是好是坏,或者它对我的神经网络的最终性能(准确性)意味着什么?