我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。

这可能高度依赖于网络架构/数据集。

其他回答

偏差不是一个神经网络项。这是一个通用的代数术语。

Y = M*X + C(直线方程)

现在如果C(Bias) = 0,那么这条线将始终经过原点,即(0,0),并且只依赖于一个参数,即M,这是斜率,所以我们有更少的东西可以处理。

C,也就是偏置取任意数,都能移动图形,因此能够表示更复杂的情况。

在逻辑回归中,目标的期望值通过链接函数进行转换,以限制其值为单位区间。这样,模型预测可以被视为主要结果概率,如下所示:

Wikipedia上的Sigmoid函数

这是神经网络映射中打开和关闭神经元的最后一个激活层。在这里,偏差也发挥了作用,它灵活地平移曲线,帮助我们绘制模型。

单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。

引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。

请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias

我认为偏见几乎总是有益的。实际上,偏差值允许您将激活函数向左或向右移动,这可能对成功学习至关重要。

看一个简单的例子可能会有所帮助。考虑这个无偏差的1输入1输出网络:

网络的输出是通过将输入(x)乘以权重(w0)并将结果传递给某种激活函数(例如sigmoid函数)来计算的。

下面是这个网络计算的函数,对于不同的w0值:

改变权重w0本质上改变了s型曲线的“陡度”。这很有用,但是如果你想让x = 2时网络输出0呢?仅仅改变s型曲线的陡度是行不通的——你希望能够将整条曲线向右平移。

这正是偏差允许你做的。如果我们给这个网络加上一个偏差,像这样:

...然后网络的输出变成sig(w0*x + w1*1.0)。下面是不同w1值的网络输出:

如果w1的权值为-5,曲线就会向右平移,这样当x = 2时,网络的输出就会为0。

扩展zfy的解释:

一个输入,一个神经元,一个输出的方程如下:

y = a * x + b * 1    and out = f(y)

其中x是输入节点的值,1是偏置节点的值; Y可以直接作为输出,也可以传递给一个函数,通常是一个sigmoid函数。还要注意,偏差可以是任何常数,但为了使一切更简单,我们总是选择1(可能这太常见了,zfy没有显示和解释它)。

你的网络试图学习系数a和b来适应你的数据。 所以你可以看到为什么添加元素b * 1可以让它更好地适应更多的数据:现在你可以改变斜率和截距。

如果你有一个以上的输入,你的方程将是这样的:

y = a0 * x0 + a1 * x1 + ... + aN * 1

请注意,这个方程仍然描述一个神经元,一个输出网络;如果你有更多的神经元,你只需在系数矩阵中增加一个维度,将输入相乘到所有节点,然后将每个节点的贡献相加。

可以写成向量化的形式

A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT

即,将系数放在一个数组中,(输入+偏差)放在另一个数组中,你就有了你想要的解决方案,作为两个向量的点积(你需要转置X的形状是正确的,我写了XT a 'X转置')

所以最后你也可以看到你的偏差只是一个输入来代表输出的那部分实际上是独立于你的输入的。

术语偏差用于调整最终输出矩阵,就像y截距一样。例如,在经典方程y = mx + c中,如果c = 0,那么直线将始终经过0。添加偏差项为我们的神经网络模型提供了更大的灵活性和更好的泛化。