我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
当前回答
在我研究的所有ML书籍中,W总是被定义为两个神经元之间的连通性指数,这意味着两个神经元之间的连通性更高。
放电神经元向目标神经元或Y = w * X传递的信号越强,为了保持神经元的生物学特性,我们需要保持1 >= w >= -1,但在实际回归中,w最终会变成| w | >=1,这与神经元的工作方式相矛盾。
因此,我提出W = cos(theta),而1 >= |cos(theta)|, Y= a * X = W * X + b而a = b + W = b + cos(theta), b是一个整数。
其他回答
一个更简单的理解偏差的方法是:它在某种程度上类似于线性函数的常数b
y = ax + b
它允许你上下移动这条线,以便更好地将预测与数据相匹配。
如果没有b,直线总是经过原点(0,0)你可能会得到一个较差的拟合。
如果您正在处理图像,实际上可能更喜欢完全不使用偏置。从理论上讲,这样你的网络将更独立于数据量,比如图片是暗的,还是亮的和生动的。网络将通过研究你的数据中的相对性来学习它的工作。很多现代神经网络都利用了这一点。
对于其他有偏差的数据可能是至关重要的。这取决于你要处理什么类型的数据。如果您的信息是大小不变的——如果输入[1,0,0.1]应该会导致与输入[100,0,10]相同的结果,那么没有偏差可能会更好。
在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。
这可能高度依赖于网络架构/数据集。
术语偏差用于调整最终输出矩阵,就像y截距一样。例如,在经典方程y = mx + c中,如果c = 0,那么直线将始终经过0。添加偏差项为我们的神经网络模型提供了更大的灵活性和更好的泛化。
偏差不是一个神经网络项。这是一个通用的代数术语。
Y = M*X + C(直线方程)
现在如果C(Bias) = 0,那么这条线将始终经过原点,即(0,0),并且只依赖于一个参数,即M,这是斜率,所以我们有更少的东西可以处理。
C,也就是偏置取任意数,都能移动图形,因此能够表示更复杂的情况。
在逻辑回归中,目标的期望值通过链接函数进行转换,以限制其值为单位区间。这样,模型预测可以被视为主要结果概率,如下所示:
Wikipedia上的Sigmoid函数
这是神经网络映射中打开和关闭神经元的最后一个激活层。在这里,偏差也发挥了作用,它灵活地平移曲线,帮助我们绘制模型。