我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

在我研究的所有ML书籍中,W总是被定义为两个神经元之间的连通性指数,这意味着两个神经元之间的连通性更高。

放电神经元向目标神经元或Y = w * X传递的信号越强,为了保持神经元的生物学特性,我们需要保持1 >= w >= -1,但在实际回归中,w最终会变成| w | >=1,这与神经元的工作方式相矛盾。

因此,我提出W = cos(theta),而1 >= |cos(theta)|, Y= a * X = W * X + b而a = b + W = b + cos(theta), b是一个整数。

其他回答

单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。

引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。

请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias

偏差决定了你的体重旋转的角度。

在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。

假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是

{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}

现在我们需要找到一个决策边界,理想的边界应该是:

看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。

但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:

现在边界平行于y轴。

我们要旋转边界。如何?

通过改变W。

因此,我们使用学习规则函数W'=W+P:

W'=W+P等价于W'=W+ bP,而b=1。

因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。

你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。

当您使用ann时,您很少了解您想要学习的系统的内部结构。有些东西没有偏见是学不来的。例如,看一下下面的数据:(0,1),(1,1),(2,1),基本上是一个将任何x映射到1的函数。

如果你有一个单层网络(或线性映射),你无法找到解决方案。然而,如果你有偏见,那就无关紧要了!

在理想情况下,偏差还可以将所有点映射到目标点的平均值,并让隐藏的神经元模拟该点的差异。

在神经网络中:

每个神经元都有一个偏向 您可以将偏差视为阈值(通常是阈值的相反值) 输入层的加权和+偏置决定神经元的激活 偏差增加了模型的灵活性。

在没有偏差的情况下,仅考虑来自输入层的加权和可能不会激活神经元。如果神经元没有被激活,来自该神经元的信息就不会通过神经网络的其余部分传递。

偏见的价值是可以学习的。

实际上,bias = - threshold。你可以把偏差想象成让神经元输出1有多容易,如果偏差很大,神经元输出1很容易,但如果偏差很大,就很难了。

总而言之:偏置有助于控制激活函数的触发值。

观看这段视频了解更多细节。

一些更有用的链接:

Geeksforgeeks

走向数据科学

在我研究的所有ML书籍中,W总是被定义为两个神经元之间的连通性指数,这意味着两个神经元之间的连通性更高。

放电神经元向目标神经元或Y = w * X传递的信号越强,为了保持神经元的生物学特性,我们需要保持1 >= w >= -1,但在实际回归中,w最终会变成| w | >=1,这与神经元的工作方式相矛盾。

因此,我提出W = cos(theta),而1 >= |cos(theta)|, Y= a * X = W * X + b而a = b + W = b + cos(theta), b是一个整数。