我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。

引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。

请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias

其他回答

Two different kinds of parameters can be adjusted during the training of an ANN, the weights and the value in the activation functions. This is impractical and it would be easier if only one of the parameters should be adjusted. To cope with this problem a bias neuron is invented. The bias neuron lies in one layer, is connected to all the neurons in the next layer, but none in the previous layer and it always emits 1. Since the bias neuron emits 1 the weights, connected to the bias neuron, are added directly to the combined sum of the other weights (equation 2.1), just like the t value in the activation functions.1

它不实用的原因是,您同时调整权重和值,因此对权重的任何更改都会抵消对先前数据实例有用的值的更改……在不改变值的情况下添加偏置神经元可以让你控制层的行为。

此外,偏差允许您使用单个神经网络来表示类似的情况。考虑由以下神经网络表示的AND布尔函数:

(来源:aihorizon.com)

W0对应于b。 W1对应x1。 W2对应于x2。

A single perceptron can be used to represent many boolean functions. For example, if we assume boolean values of 1 (true) and -1 (false), then one way to use a two-input perceptron to implement the AND function is to set the weights w0 = -3, and w1 = w2 = .5. This perceptron can be made to represent the OR function instead by altering the threshold to w0 = -.3. In fact, AND and OR can be viewed as special cases of m-of-n functions: that is, functions where at least m of the n inputs to the perceptron must be true. The OR function corresponds to m = 1 and the AND function to m = n. Any m-of-n function is easily represented using a perceptron by setting all input weights to the same value (e.g., 0.5) and then setting the threshold w0 accordingly. Perceptrons can represent all of the primitive boolean functions AND, OR, NAND ( 1 AND), and NOR ( 1 OR). Machine Learning- Tom Mitchell)

阈值是偏置,w0是与偏置/阈值神经元相关的权重。

简单来说,偏差允许学习/存储越来越多的权重变化……(注:有时给出一些阈值)。无论如何,更多的变化意味着偏差为模型的学习/存储权重添加了更丰富的输入空间表示。(更好的权重可以增强神经网络的猜测能力)

例如,在学习模型中,假设/猜测在给定输入的情况下被y=0或y=1所限制,可能是在某个分类任务中……例如,对于某些x=(1,1),有些y=0,对于某些x=(0,1),有些y=1。(假设/结果的条件是我上面谈到的阈值。注意,我的示例设置输入X为每个X =一个双值或2值向量,而不是Nate的某个集合X的单值X输入)。

如果我们忽略偏差,许多输入可能最终由许多相同的权重表示(即学习的权重大多出现在原点附近(0,0)。 这样,模型就会被限制在较差的好权重上,而不是在有偏差的情况下更好地学习更多的好权重。(学习不好的权重会导致更差的猜测或神经网络的猜测能力下降)

因此,模型既要在靠近原点的地方学习,又要在阈值/决策边界内尽可能多的地方学习,这是最优的。有了偏差,我们可以使自由度接近原点,但不限于原点的直接区域。

如果您正在处理图像,实际上可能更喜欢完全不使用偏置。从理论上讲,这样你的网络将更独立于数据量,比如图片是暗的,还是亮的和生动的。网络将通过研究你的数据中的相对性来学习它的工作。很多现代神经网络都利用了这一点。

对于其他有偏差的数据可能是至关重要的。这取决于你要处理什么类型的数据。如果您的信息是大小不变的——如果输入[1,0,0.1]应该会导致与输入[100,0,10]相同的结果,那么没有偏差可能会更好。

偏差有助于得到更好的方程。

想象一下,输入和输出就像一个函数y = ax + b,你需要在输入(x)和输出(y)之间画一条正确的线,以最小化每个点和直线之间的全局误差,如果你保持这样的方程y = ax,你将只有一个参数用于适应,即使你找到了最小化全局误差的最佳参数,它也会离你想要的值很远。

你可以说,偏差使方程更灵活,以适应最佳值

偏差决定了你的体重旋转的角度。

在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。

假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是

{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}

现在我们需要找到一个决策边界,理想的边界应该是:

看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。

但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:

现在边界平行于y轴。

我们要旋转边界。如何?

通过改变W。

因此,我们使用学习规则函数W'=W+P:

W'=W+P等价于W'=W+ bP,而b=1。

因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。

你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。