我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

一个更简单的理解偏差的方法是:它在某种程度上类似于线性函数的常数b

y = ax + b

它允许你上下移动这条线,以便更好地将预测与数据相匹配。

如果没有b,直线总是经过原点(0,0)你可能会得到一个较差的拟合。

其他回答

Two different kinds of parameters can be adjusted during the training of an ANN, the weights and the value in the activation functions. This is impractical and it would be easier if only one of the parameters should be adjusted. To cope with this problem a bias neuron is invented. The bias neuron lies in one layer, is connected to all the neurons in the next layer, but none in the previous layer and it always emits 1. Since the bias neuron emits 1 the weights, connected to the bias neuron, are added directly to the combined sum of the other weights (equation 2.1), just like the t value in the activation functions.1

它不实用的原因是,您同时调整权重和值,因此对权重的任何更改都会抵消对先前数据实例有用的值的更改……在不改变值的情况下添加偏置神经元可以让你控制层的行为。

此外,偏差允许您使用单个神经网络来表示类似的情况。考虑由以下神经网络表示的AND布尔函数:

(来源:aihorizon.com)

W0对应于b。 W1对应x1。 W2对应于x2。

A single perceptron can be used to represent many boolean functions. For example, if we assume boolean values of 1 (true) and -1 (false), then one way to use a two-input perceptron to implement the AND function is to set the weights w0 = -3, and w1 = w2 = .5. This perceptron can be made to represent the OR function instead by altering the threshold to w0 = -.3. In fact, AND and OR can be viewed as special cases of m-of-n functions: that is, functions where at least m of the n inputs to the perceptron must be true. The OR function corresponds to m = 1 and the AND function to m = n. Any m-of-n function is easily represented using a perceptron by setting all input weights to the same value (e.g., 0.5) and then setting the threshold w0 accordingly. Perceptrons can represent all of the primitive boolean functions AND, OR, NAND ( 1 AND), and NOR ( 1 OR). Machine Learning- Tom Mitchell)

阈值是偏置,w0是与偏置/阈值神经元相关的权重。

下面是一些进一步的插图,展示了一个简单的2层前馈神经网络在一个双变量回归问题上的结果。权重被随机初始化,并使用标准的ReLU激活。正如我前面的答案所总结的那样,没有偏差,relu网络无法在(0,0)处偏离零。

简单来说,偏差允许学习/存储越来越多的权重变化……(注:有时给出一些阈值)。无论如何,更多的变化意味着偏差为模型的学习/存储权重添加了更丰富的输入空间表示。(更好的权重可以增强神经网络的猜测能力)

例如,在学习模型中,假设/猜测在给定输入的情况下被y=0或y=1所限制,可能是在某个分类任务中……例如,对于某些x=(1,1),有些y=0,对于某些x=(0,1),有些y=1。(假设/结果的条件是我上面谈到的阈值。注意,我的示例设置输入X为每个X =一个双值或2值向量,而不是Nate的某个集合X的单值X输入)。

如果我们忽略偏差,许多输入可能最终由许多相同的权重表示(即学习的权重大多出现在原点附近(0,0)。 这样,模型就会被限制在较差的好权重上,而不是在有偏差的情况下更好地学习更多的好权重。(学习不好的权重会导致更差的猜测或神经网络的猜测能力下降)

因此,模型既要在靠近原点的地方学习,又要在阈值/决策边界内尽可能多的地方学习,这是最优的。有了偏差,我们可以使自由度接近原点,但不限于原点的直接区域。

在神经网络中:

每个神经元都有一个偏向 您可以将偏差视为阈值(通常是阈值的相反值) 输入层的加权和+偏置决定神经元的激活 偏差增加了模型的灵活性。

在没有偏差的情况下,仅考虑来自输入层的加权和可能不会激活神经元。如果神经元没有被激活,来自该神经元的信息就不会通过神经网络的其余部分传递。

偏见的价值是可以学习的。

实际上,bias = - threshold。你可以把偏差想象成让神经元输出1有多容易,如果偏差很大,神经元输出1很容易,但如果偏差很大,就很难了。

总而言之:偏置有助于控制激活函数的触发值。

观看这段视频了解更多细节。

一些更有用的链接:

Geeksforgeeks

走向数据科学

偏见是我们的锚。对我们来说,这是一种设定底线的方式,我们不会低于这个标准。从图的角度来看,y=mx+b就像这个函数的y轴截距。

输出=输入乘以权重值并加上偏置值,然后应用激活函数。