我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

术语偏差用于调整最终输出矩阵,就像y截距一样。例如,在经典方程y = mx + c中,如果c = 0,那么直线将始终经过0。添加偏差项为我们的神经网络模型提供了更大的灵活性和更好的泛化。

其他回答

偏差不是一个神经网络项。这是一个通用的代数术语。

Y = M*X + C(直线方程)

现在如果C(Bias) = 0,那么这条线将始终经过原点,即(0,0),并且只依赖于一个参数,即M,这是斜率,所以我们有更少的东西可以处理。

C,也就是偏置取任意数,都能移动图形,因此能够表示更复杂的情况。

在逻辑回归中,目标的期望值通过链接函数进行转换,以限制其值为单位区间。这样,模型预测可以被视为主要结果概率,如下所示:

Wikipedia上的Sigmoid函数

这是神经网络映射中打开和关闭神经元的最后一个激活层。在这里,偏差也发挥了作用,它灵活地平移曲线,帮助我们绘制模型。

下面是一些进一步的插图,展示了一个简单的2层前馈神经网络在一个双变量回归问题上的结果。权重被随机初始化,并使用标准的ReLU激活。正如我前面的答案所总结的那样,没有偏差,relu网络无法在(0,0)处偏离零。

一个更简单的理解偏差的方法是:它在某种程度上类似于线性函数的常数b

y = ax + b

它允许你上下移动这条线,以便更好地将预测与数据相匹配。

如果没有b,直线总是经过原点(0,0)你可能会得到一个较差的拟合。

当您使用ann时,您很少了解您想要学习的系统的内部结构。有些东西没有偏见是学不来的。例如,看一下下面的数据:(0,1),(1,1),(2,1),基本上是一个将任何x映射到1的函数。

如果你有一个单层网络(或线性映射),你无法找到解决方案。然而,如果你有偏见,那就无关紧要了!

在理想情况下,偏差还可以将所有点映射到目标点的平均值,并让隐藏的神经元模拟该点的差异。

简单来说,偏差允许学习/存储越来越多的权重变化……(注:有时给出一些阈值)。无论如何,更多的变化意味着偏差为模型的学习/存储权重添加了更丰富的输入空间表示。(更好的权重可以增强神经网络的猜测能力)

例如,在学习模型中,假设/猜测在给定输入的情况下被y=0或y=1所限制,可能是在某个分类任务中……例如,对于某些x=(1,1),有些y=0,对于某些x=(0,1),有些y=1。(假设/结果的条件是我上面谈到的阈值。注意,我的示例设置输入X为每个X =一个双值或2值向量,而不是Nate的某个集合X的单值X输入)。

如果我们忽略偏差,许多输入可能最终由许多相同的权重表示(即学习的权重大多出现在原点附近(0,0)。 这样,模型就会被限制在较差的好权重上,而不是在有偏差的情况下更好地学习更多的好权重。(学习不好的权重会导致更差的猜测或神经网络的猜测能力下降)

因此,模型既要在靠近原点的地方学习,又要在阈值/决策边界内尽可能多的地方学习,这是最优的。有了偏差,我们可以使自由度接近原点,但不限于原点的直接区域。