我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

简单来说,偏差允许学习/存储越来越多的权重变化……(注:有时给出一些阈值)。无论如何,更多的变化意味着偏差为模型的学习/存储权重添加了更丰富的输入空间表示。(更好的权重可以增强神经网络的猜测能力)

例如,在学习模型中,假设/猜测在给定输入的情况下被y=0或y=1所限制,可能是在某个分类任务中……例如,对于某些x=(1,1),有些y=0,对于某些x=(0,1),有些y=1。(假设/结果的条件是我上面谈到的阈值。注意,我的示例设置输入X为每个X =一个双值或2值向量,而不是Nate的某个集合X的单值X输入)。

如果我们忽略偏差,许多输入可能最终由许多相同的权重表示(即学习的权重大多出现在原点附近(0,0)。 这样,模型就会被限制在较差的好权重上,而不是在有偏差的情况下更好地学习更多的好权重。(学习不好的权重会导致更差的猜测或神经网络的猜测能力下降)

因此,模型既要在靠近原点的地方学习,又要在阈值/决策边界内尽可能多的地方学习,这是最优的。有了偏差,我们可以使自由度接近原点,但不限于原点的直接区域。

其他回答

在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。

这可能高度依赖于网络架构/数据集。

简单来说,如果你有y=w1*x,其中y是你的输出,w1是权重,想象一个条件,x=0,那么y=w1*x等于0。

如果你想要更新你的权重,你必须计算delw=target-y的变化量,其中target是你的目标输出。在这种情况下,'delw'将不会改变,因为y被计算为0。所以,假设你可以添加一些额外的值,这将有助于y = w1x + w01,其中偏差=1,权重可以调整以获得正确的偏差。考虑下面的例子。

就直线斜率而言,截距是线性方程的一种特殊形式。

Y = mx + b

检查图像

图像

这里b是(0,2)

如果你想把它增加到(0,3)你怎么通过改变b的值来实现呢?

偏差不是一个神经网络项。这是一个通用的代数术语。

Y = M*X + C(直线方程)

现在如果C(Bias) = 0,那么这条线将始终经过原点,即(0,0),并且只依赖于一个参数,即M,这是斜率,所以我们有更少的东西可以处理。

C,也就是偏置取任意数,都能移动图形,因此能够表示更复杂的情况。

在逻辑回归中,目标的期望值通过链接函数进行转换,以限制其值为单位区间。这样,模型预测可以被视为主要结果概率,如下所示:

Wikipedia上的Sigmoid函数

这是神经网络映射中打开和关闭神经元的最后一个激活层。在这里,偏差也发挥了作用,它灵活地平移曲线,帮助我们绘制模型。

下面是一些进一步的插图,展示了一个简单的2层前馈神经网络在一个双变量回归问题上的结果。权重被随机初始化,并使用标准的ReLU激活。正如我前面的答案所总结的那样,没有偏差,relu网络无法在(0,0)处偏离零。

偏差有助于得到更好的方程。

想象一下,输入和输出就像一个函数y = ax + b,你需要在输入(x)和输出(y)之间画一条正确的线,以最小化每个点和直线之间的全局误差,如果你保持这样的方程y = ax,你将只有一个参数用于适应,即使你找到了最小化全局误差的最佳参数,它也会离你想要的值很远。

你可以说,偏差使方程更灵活,以适应最佳值