我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

偏差有助于得到更好的方程。

想象一下,输入和输出就像一个函数y = ax + b,你需要在输入(x)和输出(y)之间画一条正确的线,以最小化每个点和直线之间的全局误差,如果你保持这样的方程y = ax,你将只有一个参数用于适应,即使你找到了最小化全局误差的最佳参数,它也会离你想要的值很远。

你可以说,偏差使方程更灵活,以适应最佳值

其他回答

术语偏差用于调整最终输出矩阵,就像y截距一样。例如,在经典方程y = mx + c中,如果c = 0,那么直线将始终经过0。添加偏差项为我们的神经网络模型提供了更大的灵活性和更好的泛化。

在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。

这可能高度依赖于网络架构/数据集。

一个更简单的理解偏差的方法是:它在某种程度上类似于线性函数的常数b

y = ax + b

它允许你上下移动这条线,以便更好地将预测与数据相匹配。

如果没有b,直线总是经过原点(0,0)你可能会得到一个较差的拟合。

如果您正在处理图像,实际上可能更喜欢完全不使用偏置。从理论上讲,这样你的网络将更独立于数据量,比如图片是暗的,还是亮的和生动的。网络将通过研究你的数据中的相对性来学习它的工作。很多现代神经网络都利用了这一点。

对于其他有偏差的数据可能是至关重要的。这取决于你要处理什么类型的数据。如果您的信息是大小不变的——如果输入[1,0,0.1]应该会导致与输入[100,0,10]相同的结果,那么没有偏差可能会更好。

神经网络中没有偏差的一层只不过是输入向量与矩阵的乘法。(输出向量可以通过一个sigmoid函数进行归一化,然后用于多层人工神经网络,但这并不重要。)

这意味着你在使用一个线性函数,因此一个全0的输入将总是映射到一个全0的输出。对于某些系统,这可能是一个合理的解决方案,但一般来说,它的限制太大了。

使用偏置,可以有效地为输入空间增加另一个维度,它总是取值1,因此可以避免输入向量全为0。你不会因此失去任何一般性,因为你训练的权重矩阵不需要是满射的,所以它仍然可以映射到之前可能的所有值。

二维安:

对于一个将二维映射到一维的ANN,就像在复制AND或or(或XOR)函数一样,你可以把一个神经元网络想象成做以下事情:

在二维平面上标记输入向量的所有位置。为布尔值,你想标记(1,1),(1,1),(1,1),(1,1)。你的人工神经网络现在做的是在二维平面上画一条直线,把正输出和负输出分开。

如果没有偏差,这条直线必须经过零,而有偏差,你可以把它放在任何地方。 因此,您将看到,如果没有偏差,您将面临与函数的问题,因为您不能同时将(1,-1)和(-1,1)放在负一侧。(他们不允许在线。)对于OR函数,问题是相等的。然而,有了偏见,就很容易划清界限。

请注意,在这种情况下,异或函数即使有偏差也无法求解。