我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

偏差有助于得到更好的方程。

想象一下,输入和输出就像一个函数y = ax + b,你需要在输入(x)和输出(y)之间画一条正确的线,以最小化每个点和直线之间的全局误差,如果你保持这样的方程y = ax,你将只有一个参数用于适应,即使你找到了最小化全局误差的最佳参数,它也会离你想要的值很远。

你可以说,偏差使方程更灵活,以适应最佳值

其他回答

单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。

引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。

请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias

在神经网络中:

每个神经元都有一个偏向 您可以将偏差视为阈值(通常是阈值的相反值) 输入层的加权和+偏置决定神经元的激活 偏差增加了模型的灵活性。

在没有偏差的情况下,仅考虑来自输入层的加权和可能不会激活神经元。如果神经元没有被激活,来自该神经元的信息就不会通过神经网络的其余部分传递。

偏见的价值是可以学习的。

实际上,bias = - threshold。你可以把偏差想象成让神经元输出1有多容易,如果偏差很大,神经元输出1很容易,但如果偏差很大,就很难了。

总而言之:偏置有助于控制激活函数的触发值。

观看这段视频了解更多细节。

一些更有用的链接:

Geeksforgeeks

走向数据科学

神经网络中没有偏差的一层只不过是输入向量与矩阵的乘法。(输出向量可以通过一个sigmoid函数进行归一化,然后用于多层人工神经网络,但这并不重要。)

这意味着你在使用一个线性函数,因此一个全0的输入将总是映射到一个全0的输出。对于某些系统,这可能是一个合理的解决方案,但一般来说,它的限制太大了。

使用偏置,可以有效地为输入空间增加另一个维度,它总是取值1,因此可以避免输入向量全为0。你不会因此失去任何一般性,因为你训练的权重矩阵不需要是满射的,所以它仍然可以映射到之前可能的所有值。

二维安:

对于一个将二维映射到一维的ANN,就像在复制AND或or(或XOR)函数一样,你可以把一个神经元网络想象成做以下事情:

在二维平面上标记输入向量的所有位置。为布尔值,你想标记(1,1),(1,1),(1,1),(1,1)。你的人工神经网络现在做的是在二维平面上画一条直线,把正输出和负输出分开。

如果没有偏差,这条直线必须经过零,而有偏差,你可以把它放在任何地方。 因此,您将看到,如果没有偏差,您将面临与函数的问题,因为您不能同时将(1,-1)和(-1,1)放在负一侧。(他们不允许在线。)对于OR函数,问题是相等的。然而,有了偏见,就很容易划清界限。

请注意,在这种情况下,异或函数即使有偏差也无法求解。

在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。

这可能高度依赖于网络架构/数据集。

偏差决定了你的体重旋转的角度。

在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。

假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是

{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}

现在我们需要找到一个决策边界,理想的边界应该是:

看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。

但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:

现在边界平行于y轴。

我们要旋转边界。如何?

通过改变W。

因此,我们使用学习规则函数W'=W+P:

W'=W+P等价于W'=W+ bP,而b=1。

因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。

你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。