我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
当前回答
扩展zfy的解释:
一个输入,一个神经元,一个输出的方程如下:
y = a * x + b * 1 and out = f(y)
其中x是输入节点的值,1是偏置节点的值; Y可以直接作为输出,也可以传递给一个函数,通常是一个sigmoid函数。还要注意,偏差可以是任何常数,但为了使一切更简单,我们总是选择1(可能这太常见了,zfy没有显示和解释它)。
你的网络试图学习系数a和b来适应你的数据。 所以你可以看到为什么添加元素b * 1可以让它更好地适应更多的数据:现在你可以改变斜率和截距。
如果你有一个以上的输入,你的方程将是这样的:
y = a0 * x0 + a1 * x1 + ... + aN * 1
请注意,这个方程仍然描述一个神经元,一个输出网络;如果你有更多的神经元,你只需在系数矩阵中增加一个维度,将输入相乘到所有节点,然后将每个节点的贡献相加。
可以写成向量化的形式
A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT
即,将系数放在一个数组中,(输入+偏差)放在另一个数组中,你就有了你想要的解决方案,作为两个向量的点积(你需要转置X的形状是正确的,我写了XT a 'X转置')
所以最后你也可以看到你的偏差只是一个输入来代表输出的那部分实际上是独立于你的输入的。
其他回答
偏见是我们的锚。对我们来说,这是一种设定底线的方式,我们不会低于这个标准。从图的角度来看,y=mx+b就像这个函数的y轴截距。
输出=输入乘以权重值并加上偏置值,然后应用激活函数。
在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。
这可能高度依赖于网络架构/数据集。
简单来说,如果你有y=w1*x,其中y是你的输出,w1是权重,想象一个条件,x=0,那么y=w1*x等于0。
如果你想要更新你的权重,你必须计算delw=target-y的变化量,其中target是你的目标输出。在这种情况下,'delw'将不会改变,因为y被计算为0。所以,假设你可以添加一些额外的值,这将有助于y = w1x + w01,其中偏差=1,权重可以调整以获得正确的偏差。考虑下面的例子。
就直线斜率而言,截距是线性方程的一种特殊形式。
Y = mx + b
检查图像
图像
这里b是(0,2)
如果你想把它增加到(0,3)你怎么通过改变b的值来实现呢?
在我研究的所有ML书籍中,W总是被定义为两个神经元之间的连通性指数,这意味着两个神经元之间的连通性更高。
放电神经元向目标神经元或Y = w * X传递的信号越强,为了保持神经元的生物学特性,我们需要保持1 >= w >= -1,但在实际回归中,w最终会变成| w | >=1,这与神经元的工作方式相矛盾。
因此,我提出W = cos(theta),而1 >= |cos(theta)|, Y= a * X = W * X + b而a = b + W = b + cos(theta), b是一个整数。
我认为偏见几乎总是有益的。实际上,偏差值允许您将激活函数向左或向右移动,这可能对成功学习至关重要。
看一个简单的例子可能会有所帮助。考虑这个无偏差的1输入1输出网络:
网络的输出是通过将输入(x)乘以权重(w0)并将结果传递给某种激活函数(例如sigmoid函数)来计算的。
下面是这个网络计算的函数,对于不同的w0值:
改变权重w0本质上改变了s型曲线的“陡度”。这很有用,但是如果你想让x = 2时网络输出0呢?仅仅改变s型曲线的陡度是行不通的——你希望能够将整条曲线向右平移。
这正是偏差允许你做的。如果我们给这个网络加上一个偏差,像这样:
...然后网络的输出变成sig(w0*x + w1*1.0)。下面是不同w1值的网络输出:
如果w1的权值为-5,曲线就会向右平移,这样当x = 2时,网络的输出就会为0。