我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
当前回答
简单来说,如果你有y=w1*x,其中y是你的输出,w1是权重,想象一个条件,x=0,那么y=w1*x等于0。
如果你想要更新你的权重,你必须计算delw=target-y的变化量,其中target是你的目标输出。在这种情况下,'delw'将不会改变,因为y被计算为0。所以,假设你可以添加一些额外的值,这将有助于y = w1x + w01,其中偏差=1,权重可以调整以获得正确的偏差。考虑下面的例子。
就直线斜率而言,截距是线性方程的一种特殊形式。
Y = mx + b
检查图像
图像
这里b是(0,2)
如果你想把它增加到(0,3)你怎么通过改变b的值来实现呢?
其他回答
扩展zfy的解释:
一个输入,一个神经元,一个输出的方程如下:
y = a * x + b * 1 and out = f(y)
其中x是输入节点的值,1是偏置节点的值; Y可以直接作为输出,也可以传递给一个函数,通常是一个sigmoid函数。还要注意,偏差可以是任何常数,但为了使一切更简单,我们总是选择1(可能这太常见了,zfy没有显示和解释它)。
你的网络试图学习系数a和b来适应你的数据。 所以你可以看到为什么添加元素b * 1可以让它更好地适应更多的数据:现在你可以改变斜率和截距。
如果你有一个以上的输入,你的方程将是这样的:
y = a0 * x0 + a1 * x1 + ... + aN * 1
请注意,这个方程仍然描述一个神经元,一个输出网络;如果你有更多的神经元,你只需在系数矩阵中增加一个维度,将输入相乘到所有节点,然后将每个节点的贡献相加。
可以写成向量化的形式
A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT
即,将系数放在一个数组中,(输入+偏差)放在另一个数组中,你就有了你想要的解决方案,作为两个向量的点积(你需要转置X的形状是正确的,我写了XT a 'X转置')
所以最后你也可以看到你的偏差只是一个输入来代表输出的那部分实际上是独立于你的输入的。
单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。
引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。
请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias
偏差决定了你的体重旋转的角度。
在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。
假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是
{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}
现在我们需要找到一个决策边界,理想的边界应该是:
看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。
但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:
现在边界平行于y轴。
我们要旋转边界。如何?
通过改变W。
因此,我们使用学习规则函数W'=W+P:
W'=W+P等价于W'=W+ bP,而b=1。
因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。
你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。
偏差不是一个神经网络项。这是一个通用的代数术语。
Y = M*X + C(直线方程)
现在如果C(Bias) = 0,那么这条线将始终经过原点,即(0,0),并且只依赖于一个参数,即M,这是斜率,所以我们有更少的东西可以处理。
C,也就是偏置取任意数,都能移动图形,因此能够表示更复杂的情况。
在逻辑回归中,目标的期望值通过链接函数进行转换,以限制其值为单位区间。这样,模型预测可以被视为主要结果概率,如下所示:
Wikipedia上的Sigmoid函数
这是神经网络映射中打开和关闭神经元的最后一个激活层。在这里,偏差也发挥了作用,它灵活地平移曲线,帮助我们绘制模型。
下面是一些进一步的插图,展示了一个简单的2层前馈神经网络在一个双变量回归问题上的结果。权重被随机初始化,并使用标准的ReLU激活。正如我前面的答案所总结的那样,没有偏差,relu网络无法在(0,0)处偏离零。