昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

非算法答案,但当我这样做时“高效”:

步骤1)丢弃所有现有袜子第2步)去沃尔玛买10-n包的白色和m包黑色。日常无需其他颜色生活

然而,有时,我不得不再次这样做(丢失的袜子、损坏的袜子等),我讨厌太频繁地丢弃完美的袜子(我希望他们继续出售相同的袜子参考!),所以我最近采取了不同的方法。

算法答案:

考虑一下,如果你只为第二叠袜子画一只袜子,就像你正在做的那样,你在天真的搜索中找到匹配袜子的几率很低。

所以,随机挑选其中五个,记住它们的形状或长度。

为什么是五?通常情况下,人类在工作记忆中记住五到七个不同的元素是很好的——有点像RPN堆栈的人类等价物——五个是安全的默认值。

从2n-5的堆栈中选择一个。现在,在你画的五个图案中寻找一个匹配(视觉模式匹配-人类擅长用一个小堆栈),如果你没有找到一个,那么把它添加到你的五个。继续从袜子堆中随机挑选袜子,并与你的5+1袜子进行比较。随着堆栈的增长,它会降低性能,但会提高赔率。快得多。

请随意写下公式,以计算50%的匹配几率需要抽取多少样本。IIRC这是一个超几何定律。

我每天早上都会这样做,很少需要三次以上的平局——但我有n双类似的m形白袜子(大约10双,不分输赢)。现在你可以估计我的股票堆的大小:-)

顺便说一句,我发现,每次我需要一双袜子时,整理所有袜子的交易成本之和远远少于一次整理和装订袜子。准时制的效果更好,因为这样你就不必绑袜子了,而且边际回报也在减少(也就是说,当你在洗衣店的某个地方时,你一直在寻找那两到三只袜子,而你需要完成袜子的搭配,而你却在这上面浪费了时间)。

其他回答

你试图解决错误的问题。

解决方案1:每次你把脏袜子放进洗衣篮时,把它们打个小结。这样你就不用在洗完衣服后做任何分类了。把它想象成在Mongo数据库中注册索引。未来需要做一些工作来节省CPU。

解决方案2:如果是冬天,你不必穿配套的袜子。我们是程序员。没有人需要知道,只要它有效。

解决方案3:分散工作。您希望异步执行如此复杂的CPU进程,而不阻塞UI。把那堆袜子塞进袋子里。只有在你需要的时候才找一双。这样,你的工作量就不那么明显了。

希望这有帮助!

考虑大小为“N”的哈希表。

如果我们假设正态分布,那么至少有一个袜子映射到一个存储桶的估计“插入”数量为NlogN(即,所有存储桶都已满)

我将此作为另一个谜题的一部分,但我很乐意被证明是错误的。这是我的博客文章

让“N”对应于袜子独特颜色/图案数量的近似上限。

一旦发生碰撞(也就是火柴),只需脱掉那双袜子。对下一批NlogN袜子重复相同的实验。它的美妙之处在于,由于人类思维的方式,你可以进行NlogN并行比较(冲突解决)

如果“移动”操作相当昂贵,而“比较”操作很便宜,并且无论如何都需要将整个集合移动到一个缓冲区中,在那里搜索速度比原始存储快得多。。。只需将排序整合到强制移动中即可。

我发现,将分拣过程整合到晾衣架中,这一过程变得轻而易举。无论如何,我需要拿起每一只袜子,然后把它挂起来(移动),把它挂在绳子上的某个特定位置几乎不需要任何费用。现在,为了不强制搜索整个缓冲区(字符串),我选择按颜色/阴影放置袜子。左边更黑,右边更亮,前面更鲜艳。现在,在我挂上每一只袜子之前,我先看看它的“右边附近”是否已经有一只匹配的袜子——这限制了“扫描”其他2-3只袜子——如果有,我就把另一只挂在旁边。然后,我把它们成对地卷起来,然后在干的时候把它们从绳子上取下来。

现在,这似乎与顶级答案所建议的“按颜色形成桩”没有什么不同,但首先,通过不选择离散桩而是选择范围,我没有问题将“紫色”分类为“红色”还是“蓝色”桩;它只是介于两者之间。然后通过集成两个操作(挂起晾干和分拣),挂起时的分拣开销大约是单独分拣的10%。

我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。

假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:

将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放

这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:

把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对

这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。

两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:

对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)

总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。

此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)

非算法答案,但当我这样做时“高效”:

步骤1)丢弃所有现有袜子第2步)去沃尔玛买10-n包的白色和m包黑色。日常无需其他颜色生活

然而,有时,我不得不再次这样做(丢失的袜子、损坏的袜子等),我讨厌太频繁地丢弃完美的袜子(我希望他们继续出售相同的袜子参考!),所以我最近采取了不同的方法。

算法答案:

考虑一下,如果你只为第二叠袜子画一只袜子,就像你正在做的那样,你在天真的搜索中找到匹配袜子的几率很低。

所以,随机挑选其中五个,记住它们的形状或长度。

为什么是五?通常情况下,人类在工作记忆中记住五到七个不同的元素是很好的——有点像RPN堆栈的人类等价物——五个是安全的默认值。

从2n-5的堆栈中选择一个。现在,在你画的五个图案中寻找一个匹配(视觉模式匹配-人类擅长用一个小堆栈),如果你没有找到一个,那么把它添加到你的五个。继续从袜子堆中随机挑选袜子,并与你的5+1袜子进行比较。随着堆栈的增长,它会降低性能,但会提高赔率。快得多。

请随意写下公式,以计算50%的匹配几率需要抽取多少样本。IIRC这是一个超几何定律。

我每天早上都会这样做,很少需要三次以上的平局——但我有n双类似的m形白袜子(大约10双,不分输赢)。现在你可以估计我的股票堆的大小:-)

顺便说一句,我发现,每次我需要一双袜子时,整理所有袜子的交易成本之和远远少于一次整理和装订袜子。准时制的效果更好,因为这样你就不必绑袜子了,而且边际回报也在减少(也就是说,当你在洗衣店的某个地方时,你一直在寻找那两到三只袜子,而你需要完成袜子的搭配,而你却在这上面浪费了时间)。