昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。
作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。
哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。
因此,问题基本上是:
给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)
我将感谢回答以下方面的问题:
大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?
非算法答案,但当我这样做时“高效”:
步骤1)丢弃所有现有袜子第2步)去沃尔玛买10-n包的白色和m包黑色。日常无需其他颜色生活
然而,有时,我不得不再次这样做(丢失的袜子、损坏的袜子等),我讨厌太频繁地丢弃完美的袜子(我希望他们继续出售相同的袜子参考!),所以我最近采取了不同的方法。
算法答案:
考虑一下,如果你只为第二叠袜子画一只袜子,就像你正在做的那样,你在天真的搜索中找到匹配袜子的几率很低。
所以,随机挑选其中五个,记住它们的形状或长度。
为什么是五?通常情况下,人类在工作记忆中记住五到七个不同的元素是很好的——有点像RPN堆栈的人类等价物——五个是安全的默认值。
从2n-5的堆栈中选择一个。现在,在你画的五个图案中寻找一个匹配(视觉模式匹配-人类擅长用一个小堆栈),如果你没有找到一个,那么把它添加到你的五个。继续从袜子堆中随机挑选袜子,并与你的5+1袜子进行比较。随着堆栈的增长,它会降低性能,但会提高赔率。快得多。
请随意写下公式,以计算50%的匹配几率需要抽取多少样本。IIRC这是一个超几何定律。
我每天早上都会这样做,很少需要三次以上的平局——但我有n双类似的m形白袜子(大约10双,不分输赢)。现在你可以估计我的股票堆的大小:-)
顺便说一句,我发现,每次我需要一双袜子时,整理所有袜子的交易成本之和远远少于一次整理和装订袜子。准时制的效果更好,因为这样你就不必绑袜子了,而且边际回报也在减少(也就是说,当你在洗衣店的某个地方时,你一直在寻找那两到三只袜子,而你需要完成袜子的搭配,而你却在这上面浪费了时间)。
这个问题实际上很有哲理。本质上,这是关于人们解决问题的能力(我们大脑的“湿件”)是否等同于算法所能完成的任务。
袜子分类的一个明显算法是:
Let N be the set of socks that are still unpaired, initially empty
for each sock s taken from the dryer
if s matches a sock t in N
remove t from N, bundle s and t together, and throw them in the basket
else
add s to N
现在这个问题的计算机科学都是关于步骤的
“如果s与N中的袜子t配对”。我们能多快“记住”到目前为止所看到的东西?“从N中删除t”和“将s添加到N”。跟踪我们目前所看到的情况有多贵?
人类将使用各种策略来实现这些目标。人类的记忆是关联的,类似于哈希表,其中存储值的特征集与相应的值本身配对。例如,“红色汽车”的概念映射到一个人能够记住的所有红色汽车。有完美记忆的人有完美的映射。大多数人(以及其他大多数人)在这方面都不完美。关联映射的容量有限。映射可能会在各种情况下(一杯啤酒太多)消失,被错误记录(“我认为她的名字是贝蒂,而不是内蒂”),或者即使我们观察到真相已经改变,也永远不会被覆盖(“爸爸的车”让人想起“橙色火鸟”,而我们实际上知道他用它换了红色的科迈罗)。
就袜子而言,完美回忆意味着看一只袜子总会产生它的同胞t的记忆,包括足够的信息(它在熨衣板上的位置),以便在恒定的时间内找到t。一个有照片记忆的人会在恒定的时间内完成1和2的任务。
记忆力不太好的人可能会根据自己能力范围内的特征使用一些常识等价类:尺寸(爸爸、妈妈、宝宝)、颜色(绿色、红色等)、图案(菱形、素色等)、风格(脚、膝盖高等)。这通常允许通过内存在恒定时间内定位类别,但随后需要通过类别“桶”进行线性搜索。
一个完全没有记忆或想象力的人(抱歉)只会把袜子放在一堆里,然后对整堆袜子进行线性搜索。
一个整洁的怪人可能会像某人建议的那样使用数字标签。这打开了完全排序的大门,允许人类使用与CPU完全相同的算法:二进制搜索、树、散列等。
因此,“最佳”算法取决于运行该算法的湿软件/硬件/软件的质量,以及我们是否愿意通过对其施加总订单来“欺骗”。当然,一个“最好”的元算法是雇佣世界上最好的袜子分类器:一个人或机器可以通过不断的时间查找、插入和删除,在1-1关联存储器中获取并快速存储大量的袜子属性集N。这样的人和机器都可以采购。如果你有一双袜子,你可以在O(N)时间内将所有袜子配对N双,这是最佳的。总订单标签允许您使用标准哈希来获得与人工或硬件计算机相同的结果。
我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等
这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。
假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。
当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。
除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效
这是基于比较的模型中的Omega(n log n)下限。(唯一有效的操作是比较两只袜子。)
假设你知道你的2n只袜子是这样排列的:
p1 p2 p3。。。pn pf(1)pf(2)。。。功率因数(n)
其中f是集合{1,2,…,n}的未知排列。知道这一点不会使问题变得更难。有n个!可能的输出(上半部分和下半部分之间的匹配),这意味着您需要log(n!)=Omega(n log n)比较。这可通过分类获得。
由于您对元素区别性问题的连接感兴趣:证明元素区别性的Omega(n log n)界限比较困难,因为输出是二进制的yes/no。这里,输出必须是匹配的,并且可能输出的数量足以获得一个合适的界限。然而,有一个变量与元素的区别有关。假设你有2n只袜子,想知道它们是否可以唯一配对。您可以通过将(a1,a2,…,an)发送到(a1,a1,a2、a2,…、an,an)来获得ED的缩减。(附带地,通过拓扑结构,ED的硬度证明非常有趣。)
我认为,如果只允许等式测试,那么原始问题应该有一个Omega(n2)边界。我的直觉是:考虑一个测试后添加边的图形,并认为如果图形不密集,则输出不是唯一确定的。