昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

由于人脑的结构与现代CPU完全不同,所以这个问题毫无实际意义。

人类可以利用“找到匹配的对”这一事实来战胜CPU算法,这对于一个不太大的集合来说是一个操作。

我的算法:

spread_all_socks_on_flat_surface();
while (socks_left_on_a_surface()) {
     // Thanks to human visual SIMD, this is one, quick operation.
     pair = notice_any_matching_pair();
     remove_socks_pair_from_surface(pair);
}

至少这是我在现实生活中使用的,我发现它非常有效。缺点是它需要一个平坦的表面,但通常很丰富。

其他回答

成本:移动袜子->高,查找/搜索袜子排成一排->小

我们想做的是减少移动次数,并用搜索次数进行补偿。此外,我们还可以利用智人的多威胁环境,在解密缓存中保存更多的东西。

X=您的,Y=您的配偶

从所有袜子的A堆开始:

选择两个袜子,将相应的X袜子放在X线上,将Y袜子放在Y线上的下一个可用位置。

直到A为空。

对于每行X和Y

选择行中的第一只袜子,沿着行搜索,直到找到相应的袜子。放入相应的袜子成品线。可选当您搜索线条时,当前正在查看的袜子与之前的袜子相同,请对这些袜子执行步骤2。

可选地,在第一步中,您从该行中拾取两个袜子,而不是两个,因为缓存内存足够大,我们可以快速识别其中一个袜子是否与您正在观察的行上的当前袜子匹配。如果你有幸拥有三只手臂,那么考虑到受试者的记忆足够大,你可以同时解析三只袜子。

直到X和Y都为空。

Done

然而,由于这与选择排序具有相似的复杂性,由于I/O(移动袜子)和搜索(搜索袜子的行)的速度,所花费的时间要少得多。

我刚刚完成袜子配对,我发现最好的方法是:

选择一只袜子并将其收起来(为这双袜子创建一个“水桶”)如果下一个是上一个的一对,则将其放到现有的存储桶中,否则创建一个新的存储桶。

在最坏的情况下,这意味着您将有n/2个不同的存储桶,并且您将有n-2个关于哪个存储桶包含当前袜子的确定。显然,如果你只有几对,这个算法会很好地工作;我用了12双鞋。

它不是那么科学,但它工作得很好:)

案例1:所有袜子都是一样的(顺便说一句,这是我在现实生活中所做的)。

选择其中的任意两个组成一对。恒定时间。

案例2:有固定数量的组合(所有权、颜色、大小、纹理等)。

使用基数排序。这只是线性时间,因为不需要比较。

情况3:组合的数量事先未知(一般情况)。

我们必须进行比较,以检查两只袜子是否成对。选择基于O(n log n)比较的排序算法之一。

然而,在现实生活中,当袜子的数量相对较少(恒定)时,这些理论上的优化算法将无法很好地工作。这可能比顺序搜索花费更多的时间,理论上需要二次时间。

我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。

假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:

将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放

这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:

把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对

这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。

两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:

对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)

总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。

此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)

如果“移动”操作相当昂贵,而“比较”操作很便宜,并且无论如何都需要将整个集合移动到一个缓冲区中,在那里搜索速度比原始存储快得多。。。只需将排序整合到强制移动中即可。

我发现,将分拣过程整合到晾衣架中,这一过程变得轻而易举。无论如何,我需要拿起每一只袜子,然后把它挂起来(移动),把它挂在绳子上的某个特定位置几乎不需要任何费用。现在,为了不强制搜索整个缓冲区(字符串),我选择按颜色/阴影放置袜子。左边更黑,右边更亮,前面更鲜艳。现在,在我挂上每一只袜子之前,我先看看它的“右边附近”是否已经有一只匹配的袜子——这限制了“扫描”其他2-3只袜子——如果有,我就把另一只挂在旁边。然后,我把它们成对地卷起来,然后在干的时候把它们从绳子上取下来。

现在,这似乎与顶级答案所建议的“按颜色形成桩”没有什么不同,但首先,通过不选择离散桩而是选择范围,我没有问题将“紫色”分类为“红色”还是“蓝色”桩;它只是介于两者之间。然后通过集成两个操作(挂起晾干和分拣),挂起时的分拣开销大约是单独分拣的10%。