昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

两种思路,查找任何匹配项所需的速度,与查找所有匹配项所需要的速度相比,与存储相比。

对于第二种情况,我想指出一个GPU并行版本,它查询所有匹配的袜子。

如果您有多个要匹配的财产,则可以使用分组元组和更高级的zip迭代器以及推力的转换函数,尽管这里是一个基于GPU的简单查询:

//test.cu
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/copy.h>
#include <thrust/count.h>
#include <thrust/remove.h>
#include <thrust/random.h>
#include <iostream>
#include <iterator>
#include <string>

// Define some types for pseudo code readability
typedef thrust::device_vector<int> GpuList;
typedef GpuList::iterator          GpuListIterator;

template <typename T>
struct ColoredSockQuery : public thrust::unary_function<T,bool>
{
    ColoredSockQuery( int colorToSearch )
    { SockColor = colorToSearch; }

    int SockColor;

    __host__ __device__
    bool operator()(T x)
    {
        return x == SockColor;
    }
};


struct GenerateRandomSockColor
{
    float lowBounds, highBounds;

    __host__ __device__
    GenerateRandomSockColor(int _a= 0, int _b= 1) : lowBounds(_a), highBounds(_b) {};

    __host__ __device__
    int operator()(const unsigned int n) const
    {
        thrust::default_random_engine rng;
        thrust::uniform_real_distribution<float> dist(lowBounds, highBounds);
        rng.discard(n);
        return dist(rng);
    }
};

template <typename GpuListIterator>
void PrintSocks(const std::string& name, GpuListIterator first, GpuListIterator last)
{
    typedef typename std::iterator_traits<GpuListIterator>::value_type T;

    std::cout << name << ": ";
    thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " "));
    std::cout << "\n";
}

int main()
{
    int numberOfSocks = 10000000;
    GpuList socks(numberOfSocks);
    thrust::transform(thrust::make_counting_iterator(0),
                      thrust::make_counting_iterator(numberOfSocks),
                      socks.begin(),
                      GenerateRandomSockColor(0, 200));

    clock_t start = clock();

    GpuList sortedSocks(socks.size());
    GpuListIterator lastSortedSock = thrust::copy_if(socks.begin(),
                                                     socks.end(),
                                                     sortedSocks.begin(),
                                                     ColoredSockQuery<int>(2));
    clock_t stop = clock();

    PrintSocks("Sorted Socks: ", sortedSocks.begin(), lastSortedSock);

    double elapsed = (double)(stop - start) * 1000.0 / CLOCKS_PER_SEC;
    std::cout << "Time elapsed in ms: " << elapsed << "\n";

    return 0;
}

    //nvcc -std=c++11 -o test test.cu

1000万只袜子的运行时间:9毫秒

其他回答

如果你可以将一双袜子抽象为密钥本身,将另一双袜子作为值,那么我们可以使用哈希来发挥作用。

在你身后的地板上做两个假想的部分,一个给你,另一个给配偶。从袜子堆里取一只。现在,按照以下规则将袜子一只一只地放在地板上。确定袜子是你的还是她的,并查看地板上的相关部分。如果你能在地板上找到这双鞋,就把它捡起来,把它们系起来,或者把它们夹起来,或者在找到一双鞋后做任何你想做的事情,然后把它放在篮子里(把它从地板上取下来)。将其放在相关章节中。重复3次,直到所有袜子都从袜子堆上取下。

说明:

哈希和抽象

抽象是一个非常强大的概念,已用于改善用户体验(UX)。现实生活中与计算机交互的抽象示例包括:

用于在GUI(图形用户界面)中导航以访问地址的文件夹图标,而不是键入实际地址以导航到某个位置。GUI滑块用于控制不同级别的音量、文档滚动位置等。。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

我相信提问者正在考虑使用哈希,这样在放置袜子之前,应该知道袜子的位置。

这就是为什么我建议将放在地板上的一只袜子抽象为哈希键本身(因此不需要复制袜子)。

如何定义哈希键?

如果有不止一双类似的袜子,下面的密钥定义也适用。也就是说,假设有两双黑色男士袜子PairA和PairB,每双袜子都被命名为PairA-L、PairA-R、PairB-L和PairB-R。因此,PairA-L可以与PairB-R配对,但PairA-L和PairB-L不能配对。

假设任何袜子都可以通过以下方式唯一标识,

属性[性别]+属性[颜色]+属性(材质)+属性[类型1]+属性[类别2]+属性[左_右]

这是我们的第一个哈希函数。让我们对这个h1(G_C_M_T1_T2_LR)使用一个简短的符号。h1(x)不是我们的位置键。

消除Left_or_Right属性的另一个哈希函数是h2(G_C_M_T1_T2)。第二个函数h2(x)是我们的位置键!(你身后地板上的空间)。

要定位插槽,请使用h2(G_C_M_T1_T2)。一旦找到了槽,就使用h1(x)来检查它们的哈希值。如果它们不匹配,你就有一对。否则,把袜子扔到同一个槽里。

注意:由于我们在找到一个插槽时删除了一个插槽,因此可以安全地假设最多只有一个插槽具有唯一的h2(x)或h1(x)值。

如果我们每只袜子正好有一对匹配的袜子,那么使用h2(x)来查找位置,如果没有袜子,则需要进行检查,因为可以安全地假设它们是一对。

为什么把袜子放在地板上很重要

让我们考虑一个场景,袜子堆在一起(最坏的情况)。这意味着我们别无选择,只能进行线性搜索来找到一对。

将它们铺在地板上可以提高可见度,从而提高发现匹配袜子(匹配哈希键)的机会。当第三步把袜子放在地板上时,我们的大脑已经下意识地记录了位置。-因此,如果这个位置在我们的内存中可用,我们可以直接找到匹配的配对。-如果没有记住位置,不要担心,然后我们可以一直返回到线性搜索。

为什么从地板上取下这对鞋很重要?

短期人类记忆在需要记忆的项目较少时效果最好。因此,增加了我们使用哈希来识别这对的概率。当使用线性搜索对时,它还将减少要搜索的项目的数量。

分析

情况1:最坏的情况是,Derpina无法记住或直接使用哈希技术在地板上发现袜子。Derp对地板上的物品进行线性搜索。这并不比遍历堆以找到对更糟。比较上限:O(n^2)。比较下限:(n/2)。(当Derpina每捡一只袜子都是上一只的时候)。案例2:德普记得他放在地板上的每一只袜子的位置,每只袜子正好有一双。比较上限:O(n/2)。比较下限:O(n/2)。

我说的是比较操作,从袜子堆里挑选袜子必然是n次操作。因此,实际的下限是n次迭代,n/2次比较。

加快进度

为了获得完美的分数,使Derp获得O(n/2)比较,我建议Derpina,

花更多时间穿袜子来熟悉它。是的,这意味着也要花更多时间穿着德普的袜子。玩记忆游戏,如在网格中找出对,可以提高短期记忆性能,这是非常有益的。

这是否等同于元素清晰度问题?

我建议的方法是用于解决元素区分问题的方法之一,将它们放在哈希表中并进行比较。

考虑到您的特殊情况,即只有一个精确的对,它已经变得非常等价于元素区别问题。因为我们甚至可以对袜子进行分类,并检查相邻袜子是否成对(EDP的另一种解决方案)。

然而,如果给定袜子可能存在不止一双,那么它就偏离了EDP。

我刚刚完成袜子配对,我发现最好的方法是:

选择一只袜子并将其收起来(为这双袜子创建一个“水桶”)如果下一个是上一个的一对,则将其放到现有的存储桶中,否则创建一个新的存储桶。

在最坏的情况下,这意味着您将有n/2个不同的存储桶,并且您将有n-2个关于哪个存储桶包含当前袜子的确定。显然,如果你只有几对,这个算法会很好地工作;我用了12双鞋。

它不是那么科学,但它工作得很好:)

从你的问题来看,你显然没有太多洗衣方面的实际经验:)。你需要一种算法,能很好地处理少量不可配对的袜子。

到目前为止,答案还没有充分利用我们的人类模式识别能力。集合游戏提供了如何做好这一点的线索:将所有袜子放在一个二维空间中,这样你就可以很好地识别它们,并用手轻松地够到它们。这将您的面积限制在120*80厘米左右。从那里选择您识别的配对并将其删除。将多余的袜子放在空闲空间,然后重复。如果你为穿着容易辨认的袜子的人洗衣服(脑海中浮现的是小孩子),你可以先选择袜子来进行基数排序。该算法仅在单袜子数量较少时有效

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。