昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。

几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。

我通过以下方式做到这一点:

挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。

这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。

通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。

在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。

在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。

其他回答

我的解决方案并不完全符合您的要求,因为它正式需要O(n)“额外”空间。然而,考虑到我的条件,它在我的实际应用中非常有效。因此,我认为这应该很有趣。

与其他任务合并

我的特殊情况是,我不用烘干机,只是把衣服挂在普通的烘干机上。挂布需要O(n)操作(顺便说一句,我在这里总是考虑垃圾箱包装问题),这个问题本质上需要线性的“额外”空间。当我从桶里拿出一只新袜子时,如果这双袜子已经挂好了,我会试着把它挂在旁边。如果是新袜子,我会在旁边留出一些空间。

Oracle机器更好;-)

显然,这需要一些额外的工作来检查是否有匹配的袜子已经挂在某个地方,这将为计算机提供系数约为1/2的解O(n^2)。但在这种情况下,“人为因素”实际上是一种优势——如果匹配的袜子已经挂起,我通常可以很快(几乎为O(1))识别出它(可能涉及到大脑缓存中的一些难以察觉的因素)——将其视为一种有限的“预言机”,如oracle Machine;-)我们人类在某些情况下比数字机器有这些优势;-)

快到O(n)!

因此,将袜子配对的问题与挂布的问题联系起来,我可以免费获得O(n)“额外的空间”,并有一个及时的解决方案,大约O(n),只需要比简单的挂布多一点的工作,即使在非常糟糕的星期一早晨,也可以立即获得一双完整的袜子…;-)

对于p双袜子(n=2p只袜子),我实际上是这样做的:

从袜子堆里随便拿一只袜子。对于第一只袜子,或者如果之前选择的所有袜子都已配对,只需将袜子放入前面未配对袜子“阵列”的第一个“槽”中。如果有一个或多个选定的未配对袜子,请对照阵列中的所有未配对袜子检查当前袜子。在构建阵列时,可以将袜子分为普通类别或类型(白色/黑色、脚踝/圆领、运动型/连衣裙),并“向下搜索”以仅比较同类。如果你找到了一个可以接受的匹配,把两只袜子放在一起,然后把它们从阵列中去掉。如果没有,请将当前袜子放入阵列中第一个打开的插槽中。对每只袜子重复上述步骤。

这种方案的最坏情况是,每双袜子都不同,必须完全匹配,而且你挑选的第一双n/2袜子都不同。这是你的O(n2)场景,极不可能。如果袜子的独特类型的数量t小于袜子对的数量p=n/2,并且每种类型的袜子都足够相似(通常在穿着相关的术语中),使得该类型的任何袜子都可以与任何其他袜子配对,那么正如我上面所推断的,你必须与之进行比较的袜子的最大数量是t,之后你拉动的下一只袜子将与未配对的袜子之一相匹配。这种情况在普通袜子抽屉中比在最坏情况下更可能发生,并将最坏情况的复杂性降低到O(n*t),其中通常t<<n。

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。

这是问错了问题。正确的问题是,我为什么要花时间整理袜子?如果你选择X个货币单位来计算你的空闲时间,那么每年的花费是多少?

通常情况下,这不仅仅是任何空闲时间,这是早晨的空闲时间,你可以躺在床上,或者喝咖啡,或者早点离开,不被交通堵塞。

退一步想办法解决问题通常是好的。

还有一个办法!

找一只你喜欢的袜子。考虑所有相关特征:不同照明条件下的颜色、整体质量和耐久性、不同气候条件下的舒适性以及气味吸收。同样重要的是,它们在储存过程中不应失去弹性,所以天然织物是好的,它们应该可以用塑料包装。

如果左脚和右脚的袜子没有区别,那就更好了,但这并不重要。如果袜子是左右对称的,找到一双袜子是O(1)运算,而对袜子进行排序是近似的O(M)运算,其中M是你家里扔袜子的地方的数量,理想情况下是一个小常数。

如果你选择了一双左右袜子不同的奇装异服,对左脚和右脚的桶进行全桶排序,取O(N+M),其中N是袜子的数量,M与上述相同。其他人可以给出找到第一双袜子的平均迭代次数的公式,但通过盲搜索找到一双袜子的最坏情况是N/2+1,对于合理的N来说,这在天文学上是不太可能的。当用Mk1 Eyeball扫描一堆未分类的袜子时,使用先进的图像识别算法和启发式方法可以加快速度。

因此,实现O(1)袜子配对效率的算法(假设对称袜子)为:

你需要估计你的余生需要多少双袜子,或者直到你退休并搬到更温暖的气候,不再需要穿袜子。如果你还年轻,你还可以估计我们需要多长时间才能在家里拥有袜子分拣机器人,而整个问题变得无关紧要。您需要了解如何批量订购您选择的袜子,以及它的价格,以及它们的送货方式。订购袜子!扔掉你的旧袜子。

另一个步骤3将包括比较几年来一次购买几双同样数量的可能更便宜的袜子的成本,并加上整理袜子的成本。但我要保证:批量购买更便宜!此外,库存袜子的价值会随着股价的上涨而增加,这比你在很多投资中得到的要多。此外,还有存储成本,但袜子确实不会占用壁橱顶部货架上的空间。

问题已解决。所以,只要买一双新袜子,扔掉/捐赠你的旧袜子,在知道你的余生每天都在节省金钱和时间之后,就可以幸福地生活下去。

当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。

几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。

我通过以下方式做到这一点:

挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。

这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。

通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。

在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。

在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。