昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。

几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。

我通过以下方式做到这一点:

挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。

这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。

通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。

在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。

在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。

其他回答

拿起第一只袜子放在桌子上。现在再挑一只袜子;如果它与第一个拾取的匹配,请将其放在第一个拾取上。如果没有,把它放在桌子上,离第一个小距离。挑选第三只袜子;如果它与前两个匹配,请将它放在它们的上面,或者将它放置在距离第三个的一小段距离处。重复上述步骤,直到你捡起所有袜子。

成本:移动袜子->高,查找/搜索袜子排成一排->小

我们想做的是减少移动次数,并用搜索次数进行补偿。此外,我们还可以利用智人的多威胁环境,在解密缓存中保存更多的东西。

X=您的,Y=您的配偶

从所有袜子的A堆开始:

选择两个袜子,将相应的X袜子放在X线上,将Y袜子放在Y线上的下一个可用位置。

直到A为空。

对于每行X和Y

选择行中的第一只袜子,沿着行搜索,直到找到相应的袜子。放入相应的袜子成品线。可选当您搜索线条时,当前正在查看的袜子与之前的袜子相同,请对这些袜子执行步骤2。

可选地,在第一步中,您从该行中拾取两个袜子,而不是两个,因为缓存内存足够大,我们可以快速识别其中一个袜子是否与您正在观察的行上的当前袜子匹配。如果你有幸拥有三只手臂,那么考虑到受试者的记忆足够大,你可以同时解析三只袜子。

直到X和Y都为空。

Done

然而,由于这与选择排序具有相似的复杂性,由于I/O(移动袜子)和搜索(搜索袜子的行)的速度,所花费的时间要少得多。

我提出的解决方案假设所有袜子在细节上都是相同的,除了颜色。如果袜子之间有更多的细节需要延迟,这些细节可以用来定义不同类型的袜子,而不是我的例子中的颜色。。

假设我们有一堆袜子,袜子可以有三种颜色:蓝色、红色或绿色。

然后,我们可以为每种颜色创建一个并行工作程序;它有自己的列表来填充相应的颜色。

At time i:

Blue  read  Pile[i]    : If Blue  then Blue.Count++  ; B=TRUE  ; sync

Red   read  Pile[i+1]  : If Red   then Red.Count++   ; R=TRUE  ; sync

Green read  Pile [i+2] : If Green then Green.Count++ ; G=TRUE  ; sync

同步过程:

Sync i:

i++

If R is TRUE:
    i++
    If G is TRUE:
        i++

这需要初始化:

Init:

If Pile[0] != Blue:
    If      Pile[0] = Red   : Red.Count++
    Else if Pile[0] = Green : Green.Count++

If Pile[1] != Red:
    If Pile[0] = Green : Green.Count++

哪里

Best Case: B, R, G, B, R, G, .., B, R, G

Worst Case: B, B, B, .., B

Time(Worst-Case) = C * n ~ O(n)

Time(Best-Case) = C * (n/k) ~ O(n/k)

n: number of sock pairs
k: number of colors
C: sync overhead

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。

一种有效的袜子配对算法

前提条件

堆里必须至少有一只袜子桌子必须足够大,以容纳N/2袜子(最坏情况),其中N是总数袜子。

算法

Try:

挑选第一只袜子把它放在桌子上选择下一只袜子,然后看看它(可能会把“不再有袜子”扔到袜子堆里)现在扫描桌子上的袜子(如果桌子上没有袜子,则抛出异常)有匹配的吗?a) 是=>从桌子上取下匹配的袜子b) no=>将袜子放在桌子上(可能会抛出“桌子不够大”异常)

除了:

桌子不够大:小心地将所有未配对的袜子混合在一起,然后继续操作//此操作将导致一个新的堆和一个空表桌子上没有袜子:扔(最后一只不受欢迎的袜子)堆里没有袜子:出口洗衣房

最后:

如果袜子堆里还有袜子:转到3

已知问题

如果或周围没有表,算法将进入无限循环桌子上没有足够的地方容纳至少一只袜子。

可能的改进

根据要分拣的袜子数量,吞吐量可能是通过整理桌子上的袜子来增加空间

为了使其工作,需要一个具有唯一每双袜子的价值。这样的属性很容易根据袜子的视觉财产合成。

按所述属性对桌上的袜子进行排序。让我们调用该属性“颜色”。将袜子排成一排,并将深色袜子放在右侧(即push_back()),左侧(即。.push_front())

对于大量的袜子,尤其是以前看不见的袜子,属性合成可能需要很长时间,因此吞吐量将明显下降。但是,这些属性可以保存在内存中并重用。

需要进行一些研究来评估这种可能性的效率改善出现以下问题:

上述袜子的最佳搭配数量是多少改善对于给定数量的袜子,之前需要多少次迭代吞吐量增加?a) 用于最后一次迭代b) 对于所有迭代

符合MCVE指南的PoC:

#include <iostream>
#include <vector>
#include <string>
#include <time.h>

using namespace std;

struct pileOfsocks {
    pileOfsocks(int pairCount = 42) :
        elemCount(pairCount<<1) {
        srand(time(NULL));
        socks.resize(elemCount);

        vector<int> used_colors;
        vector<int> used_indices;

        auto getOne = [](vector<int>& v, int c) {
            int r;
            do {
                r = rand() % c;
            } while (find(v.begin(), v.end(), r) != v.end());
            v.push_back(r);
            return r;
        };

        for (auto i = 0; i < pairCount; i++) {
            auto sock_color = getOne(used_colors, INT_MAX);
            socks[getOne(used_indices, elemCount)] = sock_color;
            socks[getOne(used_indices, elemCount)] = sock_color;
        }
    }

    void show(const string& prompt) {
        cout << prompt << ":" << endl;
        for (auto i = 0; i < socks.size(); i++){
            cout << socks[i] << " ";
        }
        cout << endl;
    }

    void pair() {
        for (auto i = 0; i < socks.size(); i++) {
            std::vector<int>::iterator it = find(unpaired_socks.begin(), unpaired_socks.end(), socks[i]);
            if (it != unpaired_socks.end()) {
                unpaired_socks.erase(it);
                paired_socks.push_back(socks[i]);
                paired_socks.push_back(socks[i]);
            }
            else
                unpaired_socks.push_back(socks[i]);
        }

        socks = paired_socks;
        paired_socks.clear();
    }

private:
    int elemCount;
    vector<int> socks;
    vector<int> unpaired_socks;
    vector<int> paired_socks;
};

int main() {
    pileOfsocks socks;

    socks.show("unpaired socks");
    socks.pair();
    socks.show("paired socks");

    system("pause");
    return 0;
}