昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

其他回答

我提出了另一个解决方案,它不会承诺更少的操作,也不会减少时间消耗,但应该尝试看看它是否能成为一个足够好的启发式方法,在大量袜子配对中提供更少的时间消耗。

前提条件:不能保证有相同的袜子。如果它们的颜色相同,并不意味着它们的大小或图案相同。袜子随机洗牌。袜子的数量可能是奇数(有些不见了,我们不知道有多少)。准备记住一个变量“index”并将其设置为0。

结果将有一个或两个桩:1。“匹配”和2。“缺少”

启发式:

找到最与众不同的袜子。找到匹配项。如果没有匹配项,请将其放在“缺失”堆上。从1开始重复。直到没有最与众不同的袜子。如果袜子少于6只,请转到11只。盲目地将所有袜子与邻居配对(不要打包)找到所有匹配的对,将其打包并将打包的对移动到“匹配”的堆中;如果没有新的匹配项-将“索引”增加1如果“index”大于2(这可能取决于袜子的值因为袜子数量越多盲目配对)进入11打乱其余的转到1忘记“索引”挑选一只袜子查找其配对如果没有袜子,就把它移到“失踪”的那一堆如果找到匹配项,将其配对,将其打包并移动到“匹配”堆中如果还有不止一只袜子,那就去12只如果只剩下一个,请转到14满意的微笑:)

此外,还可以添加检查袜子是否损坏,就像移除袜子一样。它可以插入2到3之间,13到14之间。

我期待听到任何经验或更正。

正如许多作者所指出的,基数排序是一种有效的袜子排序方法。尚未提出的是一种完美的哈希方法。用每双袜子买来的时间来计算真是太麻烦了。在你购买袜子时,只需按顺序给袜子编号,就可以让你在整理袜子时把它们放在自己编号的抽屉里。

最多24双袜子的示例。请注意,较大的袜子隔层消除了将袜子卷在一起的需要,这就是所谓的速度/存储权衡。

我的解决方案并不完全符合您的要求,因为它正式需要O(n)“额外”空间。然而,考虑到我的条件,它在我的实际应用中非常有效。因此,我认为这应该很有趣。

与其他任务合并

我的特殊情况是,我不用烘干机,只是把衣服挂在普通的烘干机上。挂布需要O(n)操作(顺便说一句,我在这里总是考虑垃圾箱包装问题),这个问题本质上需要线性的“额外”空间。当我从桶里拿出一只新袜子时,如果这双袜子已经挂好了,我会试着把它挂在旁边。如果是新袜子,我会在旁边留出一些空间。

Oracle机器更好;-)

显然,这需要一些额外的工作来检查是否有匹配的袜子已经挂在某个地方,这将为计算机提供系数约为1/2的解O(n^2)。但在这种情况下,“人为因素”实际上是一种优势——如果匹配的袜子已经挂起,我通常可以很快(几乎为O(1))识别出它(可能涉及到大脑缓存中的一些难以察觉的因素)——将其视为一种有限的“预言机”,如oracle Machine;-)我们人类在某些情况下比数字机器有这些优势;-)

快到O(n)!

因此,将袜子配对的问题与挂布的问题联系起来,我可以免费获得O(n)“额外的空间”,并有一个及时的解决方案,大约O(n),只需要比简单的挂布多一点的工作,即使在非常糟糕的星期一早晨,也可以立即获得一双完整的袜子…;-)

我提出的解决方案假设所有袜子在细节上都是相同的,除了颜色。如果袜子之间有更多的细节需要延迟,这些细节可以用来定义不同类型的袜子,而不是我的例子中的颜色。。

假设我们有一堆袜子,袜子可以有三种颜色:蓝色、红色或绿色。

然后,我们可以为每种颜色创建一个并行工作程序;它有自己的列表来填充相应的颜色。

At time i:

Blue  read  Pile[i]    : If Blue  then Blue.Count++  ; B=TRUE  ; sync

Red   read  Pile[i+1]  : If Red   then Red.Count++   ; R=TRUE  ; sync

Green read  Pile [i+2] : If Green then Green.Count++ ; G=TRUE  ; sync

同步过程:

Sync i:

i++

If R is TRUE:
    i++
    If G is TRUE:
        i++

这需要初始化:

Init:

If Pile[0] != Blue:
    If      Pile[0] = Red   : Red.Count++
    Else if Pile[0] = Green : Green.Count++

If Pile[1] != Red:
    If Pile[0] = Green : Green.Count++

哪里

Best Case: B, R, G, B, R, G, .., B, R, G

Worst Case: B, B, B, .., B

Time(Worst-Case) = C * n ~ O(n)

Time(Best-Case) = C * (n/k) ~ O(n/k)

n: number of sock pairs
k: number of colors
C: sync overhead

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效