昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我的解决方案并不完全符合您的要求,因为它正式需要O(n)“额外”空间。然而,考虑到我的条件,它在我的实际应用中非常有效。因此,我认为这应该很有趣。

与其他任务合并

我的特殊情况是,我不用烘干机,只是把衣服挂在普通的烘干机上。挂布需要O(n)操作(顺便说一句,我在这里总是考虑垃圾箱包装问题),这个问题本质上需要线性的“额外”空间。当我从桶里拿出一只新袜子时,如果这双袜子已经挂好了,我会试着把它挂在旁边。如果是新袜子,我会在旁边留出一些空间。

Oracle机器更好;-)

显然,这需要一些额外的工作来检查是否有匹配的袜子已经挂在某个地方,这将为计算机提供系数约为1/2的解O(n^2)。但在这种情况下,“人为因素”实际上是一种优势——如果匹配的袜子已经挂起,我通常可以很快(几乎为O(1))识别出它(可能涉及到大脑缓存中的一些难以察觉的因素)——将其视为一种有限的“预言机”,如oracle Machine;-)我们人类在某些情况下比数字机器有这些优势;-)

快到O(n)!

因此,将袜子配对的问题与挂布的问题联系起来,我可以免费获得O(n)“额外的空间”,并有一个及时的解决方案,大约O(n),只需要比简单的挂布多一点的工作,即使在非常糟糕的星期一早晨,也可以立即获得一双完整的袜子…;-)

其他回答

这个问题实际上很有哲理。本质上,这是关于人们解决问题的能力(我们大脑的“湿件”)是否等同于算法所能完成的任务。

袜子分类的一个明显算法是:

Let N be the set of socks that are still unpaired, initially empty
for each sock s taken from the dryer
  if s matches a sock t in N
    remove t from N, bundle s and t together, and throw them in the basket
  else
    add s to N

现在这个问题的计算机科学都是关于步骤的

“如果s与N中的袜子t配对”。我们能多快“记住”到目前为止所看到的东西?“从N中删除t”和“将s添加到N”。跟踪我们目前所看到的情况有多贵?

人类将使用各种策略来实现这些目标。人类的记忆是关联的,类似于哈希表,其中存储值的特征集与相应的值本身配对。例如,“红色汽车”的概念映射到一个人能够记住的所有红色汽车。有完美记忆的人有完美的映射。大多数人(以及其他大多数人)在这方面都不完美。关联映射的容量有限。映射可能会在各种情况下(一杯啤酒太多)消失,被错误记录(“我认为她的名字是贝蒂,而不是内蒂”),或者即使我们观察到真相已经改变,也永远不会被覆盖(“爸爸的车”让人想起“橙色火鸟”,而我们实际上知道他用它换了红色的科迈罗)。

就袜子而言,完美回忆意味着看一只袜子总会产生它的同胞t的记忆,包括足够的信息(它在熨衣板上的位置),以便在恒定的时间内找到t。一个有照片记忆的人会在恒定的时间内完成1和2的任务。

记忆力不太好的人可能会根据自己能力范围内的特征使用一些常识等价类:尺寸(爸爸、妈妈、宝宝)、颜色(绿色、红色等)、图案(菱形、素色等)、风格(脚、膝盖高等)。这通常允许通过内存在恒定时间内定位类别,但随后需要通过类别“桶”进行线性搜索。

一个完全没有记忆或想象力的人(抱歉)只会把袜子放在一堆里,然后对整堆袜子进行线性搜索。

一个整洁的怪人可能会像某人建议的那样使用数字标签。这打开了完全排序的大门,允许人类使用与CPU完全相同的算法:二进制搜索、树、散列等。

因此,“最佳”算法取决于运行该算法的湿软件/硬件/软件的质量,以及我们是否愿意通过对其施加总订单来“欺骗”。当然,一个“最好”的元算法是雇佣世界上最好的袜子分类器:一个人或机器可以通过不断的时间查找、插入和删除,在1-1关联存储器中获取并快速存储大量的袜子属性集N。这样的人和机器都可以采购。如果你有一双袜子,你可以在O(N)时间内将所有袜子配对N双,这是最佳的。总订单标签允许您使用标准哈希来获得与人工或硬件计算机相同的结果。

由于人脑的结构与现代CPU完全不同,所以这个问题毫无实际意义。

人类可以利用“找到匹配的对”这一事实来战胜CPU算法,这对于一个不太大的集合来说是一个操作。

我的算法:

spread_all_socks_on_flat_surface();
while (socks_left_on_a_surface()) {
     // Thanks to human visual SIMD, this is one, quick operation.
     pair = notice_any_matching_pair();
     remove_socks_pair_from_surface(pair);
}

至少这是我在现实生活中使用的,我发现它非常有效。缺点是它需要一个平坦的表面,但通常很丰富。

我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。

假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:

将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放

这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:

把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对

这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。

两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:

对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)

总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。

此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效

Defant&Kravitz(1)给出了一种算法,通过将袜子依次放在脚上和脚下来对袜子进行排序。

他们的算法适用于任意数量的英尺。

本文给出了(定理1.1)可使用单脚排序的袜子订单的特征。从他们的定理1.3可以看出,每一个4种颜色的袜子订单最多可以用两只脚进行排序,而有5种颜色的袜订单不可能用两只脚排序。

Colin Defant和Noah Kravitz,袜子足部分类(2022)