昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我提出的解决方案假设所有袜子在细节上都是相同的,除了颜色。如果袜子之间有更多的细节需要延迟,这些细节可以用来定义不同类型的袜子,而不是我的例子中的颜色。。

假设我们有一堆袜子,袜子可以有三种颜色:蓝色、红色或绿色。

然后,我们可以为每种颜色创建一个并行工作程序;它有自己的列表来填充相应的颜色。

At time i:

Blue  read  Pile[i]    : If Blue  then Blue.Count++  ; B=TRUE  ; sync

Red   read  Pile[i+1]  : If Red   then Red.Count++   ; R=TRUE  ; sync

Green read  Pile [i+2] : If Green then Green.Count++ ; G=TRUE  ; sync

同步过程:

Sync i:

i++

If R is TRUE:
    i++
    If G is TRUE:
        i++

这需要初始化:

Init:

If Pile[0] != Blue:
    If      Pile[0] = Red   : Red.Count++
    Else if Pile[0] = Green : Green.Count++

If Pile[1] != Red:
    If Pile[0] = Green : Green.Count++

哪里

Best Case: B, R, G, B, R, G, .., B, R, G

Worst Case: B, B, B, .., B

Time(Worst-Case) = C * n ~ O(n)

Time(Best-Case) = C * (n/k) ~ O(n/k)

n: number of sock pairs
k: number of colors
C: sync overhead

其他回答

案例1:所有袜子都是一样的(顺便说一句,这是我在现实生活中所做的)。

选择其中的任意两个组成一对。恒定时间。

案例2:有固定数量的组合(所有权、颜色、大小、纹理等)。

使用基数排序。这只是线性时间,因为不需要比较。

情况3:组合的数量事先未知(一般情况)。

我们必须进行比较,以检查两只袜子是否成对。选择基于O(n log n)比较的排序算法之一。

然而,在现实生活中,当袜子的数量相对较少(恒定)时,这些理论上的优化算法将无法很好地工作。这可能比顺序搜索花费更多的时间,理论上需要二次时间。

整理n双袜子的问题是O(n)。在你把它们扔进洗衣篮之前,你先把左边的衣服穿到右边的衣服上。取出时,你剪下线,把每一对线放进抽屉里——对n对线进行2次操作,所以O(n)。

现在,下一个问题很简单,你是自己洗衣服,还是妻子洗衣服。这可能是一个完全不同领域的问题。:)

做一些预处理怎么样?我会在每只袜子上缝上一个标记或身份证号码,这样每双袜子都有相同的标记/身份证号码。这个过程可能在你每次买一双新袜子时都会完成。然后,您可以进行基数排序以获得O(n)总成本。为每个标记/身份证号码找一个位置,只需逐一挑选所有袜子并将它们放在正确的位置。

我已经采取了简单的步骤,将我的努力减少到一个需要O(1)时间的过程中。

通过将我的输入减少到两种袜子中的一种(休闲用的白色袜子,工作用的黑色袜子),我只需要确定手中有哪种袜子。(从技术上讲,由于它们从未一起清洗过,我已将过程缩短到O(0)时间。)

为了找到合适的袜子,需要提前付出一些努力,并购买足够数量的袜子,以消除对现有袜子的需求。因为我在需要黑色袜子之前就已经做了这件事,所以我的努力很小,但里程可能会有所不同。

这种前期工作在非常流行和有效的代码中已经多次出现。示例包括#DEFINE'将圆周率定义为几个小数(其他示例也存在,但这是我现在想到的)。

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效