昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我已经采取了简单的步骤,将我的努力减少到一个需要O(1)时间的过程中。

通过将我的输入减少到两种袜子中的一种(休闲用的白色袜子,工作用的黑色袜子),我只需要确定手中有哪种袜子。(从技术上讲,由于它们从未一起清洗过,我已将过程缩短到O(0)时间。)

为了找到合适的袜子,需要提前付出一些努力,并购买足够数量的袜子,以消除对现有袜子的需求。因为我在需要黑色袜子之前就已经做了这件事,所以我的努力很小,但里程可能会有所不同。

这种前期工作在非常流行和有效的代码中已经多次出现。示例包括#DEFINE'将圆周率定义为几个小数(其他示例也存在,但这是我现在想到的)。

其他回答

从你的问题来看,你显然没有太多洗衣方面的实际经验:)。你需要一种算法,能很好地处理少量不可配对的袜子。

到目前为止,答案还没有充分利用我们的人类模式识别能力。集合游戏提供了如何做好这一点的线索:将所有袜子放在一个二维空间中,这样你就可以很好地识别它们,并用手轻松地够到它们。这将您的面积限制在120*80厘米左右。从那里选择您识别的配对并将其删除。将多余的袜子放在空闲空间,然后重复。如果你为穿着容易辨认的袜子的人洗衣服(脑海中浮现的是小孩子),你可以先选择袜子来进行基数排序。该算法仅在单袜子数量较少时有效

Defant&Kravitz(1)给出了一种算法,通过将袜子依次放在脚上和脚下来对袜子进行排序。

他们的算法适用于任意数量的英尺。

本文给出了(定理1.1)可使用单脚排序的袜子订单的特征。从他们的定理1.3可以看出,每一个4种颜色的袜子订单最多可以用两只脚进行排序,而有5种颜色的袜订单不可能用两只脚排序。

Colin Defant和Noah Kravitz,袜子足部分类(2022)

这个问题实际上很有哲理。本质上,这是关于人们解决问题的能力(我们大脑的“湿件”)是否等同于算法所能完成的任务。

袜子分类的一个明显算法是:

Let N be the set of socks that are still unpaired, initially empty
for each sock s taken from the dryer
  if s matches a sock t in N
    remove t from N, bundle s and t together, and throw them in the basket
  else
    add s to N

现在这个问题的计算机科学都是关于步骤的

“如果s与N中的袜子t配对”。我们能多快“记住”到目前为止所看到的东西?“从N中删除t”和“将s添加到N”。跟踪我们目前所看到的情况有多贵?

人类将使用各种策略来实现这些目标。人类的记忆是关联的,类似于哈希表,其中存储值的特征集与相应的值本身配对。例如,“红色汽车”的概念映射到一个人能够记住的所有红色汽车。有完美记忆的人有完美的映射。大多数人(以及其他大多数人)在这方面都不完美。关联映射的容量有限。映射可能会在各种情况下(一杯啤酒太多)消失,被错误记录(“我认为她的名字是贝蒂,而不是内蒂”),或者即使我们观察到真相已经改变,也永远不会被覆盖(“爸爸的车”让人想起“橙色火鸟”,而我们实际上知道他用它换了红色的科迈罗)。

就袜子而言,完美回忆意味着看一只袜子总会产生它的同胞t的记忆,包括足够的信息(它在熨衣板上的位置),以便在恒定的时间内找到t。一个有照片记忆的人会在恒定的时间内完成1和2的任务。

记忆力不太好的人可能会根据自己能力范围内的特征使用一些常识等价类:尺寸(爸爸、妈妈、宝宝)、颜色(绿色、红色等)、图案(菱形、素色等)、风格(脚、膝盖高等)。这通常允许通过内存在恒定时间内定位类别,但随后需要通过类别“桶”进行线性搜索。

一个完全没有记忆或想象力的人(抱歉)只会把袜子放在一堆里,然后对整堆袜子进行线性搜索。

一个整洁的怪人可能会像某人建议的那样使用数字标签。这打开了完全排序的大门,允许人类使用与CPU完全相同的算法:二进制搜索、树、散列等。

因此,“最佳”算法取决于运行该算法的湿软件/硬件/软件的质量,以及我们是否愿意通过对其施加总订单来“欺骗”。当然,一个“最好”的元算法是雇佣世界上最好的袜子分类器:一个人或机器可以通过不断的时间查找、插入和删除,在1-1关联存储器中获取并快速存储大量的袜子属性集N。这样的人和机器都可以采购。如果你有一双袜子,你可以在O(N)时间内将所有袜子配对N双,这是最佳的。总订单标签允许您使用标准哈希来获得与人工或硬件计算机相同的结果。

正如许多作者所指出的,基数排序是一种有效的袜子排序方法。尚未提出的是一种完美的哈希方法。用每双袜子买来的时间来计算真是太麻烦了。在你购买袜子时,只需按顺序给袜子编号,就可以让你在整理袜子时把它们放在自己编号的抽屉里。

最多24双袜子的示例。请注意,较大的袜子隔层消除了将袜子卷在一起的需要,这就是所谓的速度/存储权衡。

List<Sock> UnSearchedSocks = getAllSocks();
List<Sock> UnMatchedSocks = new list<Sock>();
List<PairOfSocks> PairedSocks = new list<PairOfSocks>();

foreach (Sock newSock in UnsearchedSocks)
{
  Sock MatchedSock = null;
  foreach(Sock UnmatchedSock in UnmatchedSocks)
  {
    if (UnmatchedSock.isPairOf(newSock))
    {
      MatchedSock = UnmatchedSock;
      break;
    }
  }
  if (MatchedSock != null)
  {
    UnmatchedSocks.remove(MatchedSock);
    PairedSocks.Add(new PairOfSocks(MatchedSock, NewSock));
  }
  else
  {
    UnmatchedSocks.Add(NewSock);
  }
}