昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

这是问错了问题。正确的问题是,我为什么要花时间整理袜子?如果你选择X个货币单位来计算你的空闲时间,那么每年的花费是多少?

通常情况下,这不仅仅是任何空闲时间,这是早晨的空闲时间,你可以躺在床上,或者喝咖啡,或者早点离开,不被交通堵塞。

退一步想办法解决问题通常是好的。

还有一个办法!

找一只你喜欢的袜子。考虑所有相关特征:不同照明条件下的颜色、整体质量和耐久性、不同气候条件下的舒适性以及气味吸收。同样重要的是,它们在储存过程中不应失去弹性,所以天然织物是好的,它们应该可以用塑料包装。

如果左脚和右脚的袜子没有区别,那就更好了,但这并不重要。如果袜子是左右对称的,找到一双袜子是O(1)运算,而对袜子进行排序是近似的O(M)运算,其中M是你家里扔袜子的地方的数量,理想情况下是一个小常数。

如果你选择了一双左右袜子不同的奇装异服,对左脚和右脚的桶进行全桶排序,取O(N+M),其中N是袜子的数量,M与上述相同。其他人可以给出找到第一双袜子的平均迭代次数的公式,但通过盲搜索找到一双袜子的最坏情况是N/2+1,对于合理的N来说,这在天文学上是不太可能的。当用Mk1 Eyeball扫描一堆未分类的袜子时,使用先进的图像识别算法和启发式方法可以加快速度。

因此,实现O(1)袜子配对效率的算法(假设对称袜子)为:

你需要估计你的余生需要多少双袜子,或者直到你退休并搬到更温暖的气候,不再需要穿袜子。如果你还年轻,你还可以估计我们需要多长时间才能在家里拥有袜子分拣机器人,而整个问题变得无关紧要。您需要了解如何批量订购您选择的袜子,以及它的价格,以及它们的送货方式。订购袜子!扔掉你的旧袜子。

另一个步骤3将包括比较几年来一次购买几双同样数量的可能更便宜的袜子的成本,并加上整理袜子的成本。但我要保证:批量购买更便宜!此外,库存袜子的价值会随着股价的上涨而增加,这比你在很多投资中得到的要多。此外,还有存储成本,但袜子确实不会占用壁橱顶部货架上的空间。

问题已解决。所以,只要买一双新袜子,扔掉/捐赠你的旧袜子,在知道你的余生每天都在节省金钱和时间之后,就可以幸福地生活下去。

其他回答

这是基于比较的模型中的Omega(n log n)下限。(唯一有效的操作是比较两只袜子。)

假设你知道你的2n只袜子是这样排列的:

p1 p2 p3。。。pn pf(1)pf(2)。。。功率因数(n)

其中f是集合{1,2,…,n}的未知排列。知道这一点不会使问题变得更难。有n个!可能的输出(上半部分和下半部分之间的匹配),这意味着您需要log(n!)=Omega(n log n)比较。这可通过分类获得。

由于您对元素区别性问题的连接感兴趣:证明元素区别性的Omega(n log n)界限比较困难,因为输出是二进制的yes/no。这里,输出必须是匹配的,并且可能输出的数量足以获得一个合适的界限。然而,有一个变量与元素的区别有关。假设你有2n只袜子,想知道它们是否可以唯一配对。您可以通过将(a1,a2,…,an)发送到(a1,a1,a2、a2,…、an,an)来获得ED的缩减。(附带地,通过拓扑结构,ED的硬度证明非常有趣。)

我认为,如果只允许等式测试,那么原始问题应该有一个Omega(n2)边界。我的直觉是:考虑一个测试后添加边的图形,并认为如果图形不密集,则输出不是唯一确定的。

一种有效的袜子配对算法

前提条件

堆里必须至少有一只袜子桌子必须足够大,以容纳N/2袜子(最坏情况),其中N是总数袜子。

算法

Try:

挑选第一只袜子把它放在桌子上选择下一只袜子,然后看看它(可能会把“不再有袜子”扔到袜子堆里)现在扫描桌子上的袜子(如果桌子上没有袜子,则抛出异常)有匹配的吗?a) 是=>从桌子上取下匹配的袜子b) no=>将袜子放在桌子上(可能会抛出“桌子不够大”异常)

除了:

桌子不够大:小心地将所有未配对的袜子混合在一起,然后继续操作//此操作将导致一个新的堆和一个空表桌子上没有袜子:扔(最后一只不受欢迎的袜子)堆里没有袜子:出口洗衣房

最后:

如果袜子堆里还有袜子:转到3

已知问题

如果或周围没有表,算法将进入无限循环桌子上没有足够的地方容纳至少一只袜子。

可能的改进

根据要分拣的袜子数量,吞吐量可能是通过整理桌子上的袜子来增加空间

为了使其工作,需要一个具有唯一每双袜子的价值。这样的属性很容易根据袜子的视觉财产合成。

按所述属性对桌上的袜子进行排序。让我们调用该属性“颜色”。将袜子排成一排,并将深色袜子放在右侧(即push_back()),左侧(即。.push_front())

对于大量的袜子,尤其是以前看不见的袜子,属性合成可能需要很长时间,因此吞吐量将明显下降。但是,这些属性可以保存在内存中并重用。

需要进行一些研究来评估这种可能性的效率改善出现以下问题:

上述袜子的最佳搭配数量是多少改善对于给定数量的袜子,之前需要多少次迭代吞吐量增加?a) 用于最后一次迭代b) 对于所有迭代

符合MCVE指南的PoC:

#include <iostream>
#include <vector>
#include <string>
#include <time.h>

using namespace std;

struct pileOfsocks {
    pileOfsocks(int pairCount = 42) :
        elemCount(pairCount<<1) {
        srand(time(NULL));
        socks.resize(elemCount);

        vector<int> used_colors;
        vector<int> used_indices;

        auto getOne = [](vector<int>& v, int c) {
            int r;
            do {
                r = rand() % c;
            } while (find(v.begin(), v.end(), r) != v.end());
            v.push_back(r);
            return r;
        };

        for (auto i = 0; i < pairCount; i++) {
            auto sock_color = getOne(used_colors, INT_MAX);
            socks[getOne(used_indices, elemCount)] = sock_color;
            socks[getOne(used_indices, elemCount)] = sock_color;
        }
    }

    void show(const string& prompt) {
        cout << prompt << ":" << endl;
        for (auto i = 0; i < socks.size(); i++){
            cout << socks[i] << " ";
        }
        cout << endl;
    }

    void pair() {
        for (auto i = 0; i < socks.size(); i++) {
            std::vector<int>::iterator it = find(unpaired_socks.begin(), unpaired_socks.end(), socks[i]);
            if (it != unpaired_socks.end()) {
                unpaired_socks.erase(it);
                paired_socks.push_back(socks[i]);
                paired_socks.push_back(socks[i]);
            }
            else
                unpaired_socks.push_back(socks[i]);
        }

        socks = paired_socks;
        paired_socks.clear();
    }

private:
    int elemCount;
    vector<int> socks;
    vector<int> unpaired_socks;
    vector<int> paired_socks;
};

int main() {
    pileOfsocks socks;

    socks.show("unpaired socks");
    socks.pair();
    socks.show("paired socks");

    system("pause");
    return 0;
}
List<Sock> UnSearchedSocks = getAllSocks();
List<Sock> UnMatchedSocks = new list<Sock>();
List<PairOfSocks> PairedSocks = new list<PairOfSocks>();

foreach (Sock newSock in UnsearchedSocks)
{
  Sock MatchedSock = null;
  foreach(Sock UnmatchedSock in UnmatchedSocks)
  {
    if (UnmatchedSock.isPairOf(newSock))
    {
      MatchedSock = UnmatchedSock;
      break;
    }
  }
  if (MatchedSock != null)
  {
    UnmatchedSocks.remove(MatchedSock);
    PairedSocks.Add(new PairOfSocks(MatchedSock, NewSock));
  }
  else
  {
    UnmatchedSocks.Add(NewSock);
  }
}

创建一个哈希表,该表将用于不匹配的袜子,使用模式作为哈希。一只一只地重复袜子。如果袜子在哈希表中有图案匹配,请将袜子从表中取出并配对。如果袜子没有火柴,就把它放到桌子上。

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。