昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效

其他回答

理论上的限制是O(n),因为你需要触摸每一只袜子(除非有些袜子已经配对)。

你可以用基数排序实现O(n)。你只需要为桶选择一些属性。

首先你可以选择(她的,我的)-把它们分成两堆,然后使用颜色(可以有任何颜色的顺序,例如按颜色名称的字母顺序)-按颜色将它们分成一堆(记住对同一堆中的所有袜子保持步骤1中的初始顺序),然后袜子的长度,然后是纹理,....

如果您可以选择有限数量的属性,但有足够多的属性可以唯一地标识每对属性,则应该使用O(k*n),如果我们可以考虑k是有限的,则使用O(n)。

考虑大小为“N”的哈希表。

如果我们假设正态分布,那么至少有一个袜子映射到一个存储桶的估计“插入”数量为NlogN(即,所有存储桶都已满)

我将此作为另一个谜题的一部分,但我很乐意被证明是错误的。这是我的博客文章

让“N”对应于袜子独特颜色/图案数量的近似上限。

一旦发生碰撞(也就是火柴),只需脱掉那双袜子。对下一批NlogN袜子重复相同的实验。它的美妙之处在于,由于人类思维的方式,你可以进行NlogN并行比较(冲突解决)

两种思路,查找任何匹配项所需的速度,与查找所有匹配项所需要的速度相比,与存储相比。

对于第二种情况,我想指出一个GPU并行版本,它查询所有匹配的袜子。

如果您有多个要匹配的财产,则可以使用分组元组和更高级的zip迭代器以及推力的转换函数,尽管这里是一个基于GPU的简单查询:

//test.cu
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/copy.h>
#include <thrust/count.h>
#include <thrust/remove.h>
#include <thrust/random.h>
#include <iostream>
#include <iterator>
#include <string>

// Define some types for pseudo code readability
typedef thrust::device_vector<int> GpuList;
typedef GpuList::iterator          GpuListIterator;

template <typename T>
struct ColoredSockQuery : public thrust::unary_function<T,bool>
{
    ColoredSockQuery( int colorToSearch )
    { SockColor = colorToSearch; }

    int SockColor;

    __host__ __device__
    bool operator()(T x)
    {
        return x == SockColor;
    }
};


struct GenerateRandomSockColor
{
    float lowBounds, highBounds;

    __host__ __device__
    GenerateRandomSockColor(int _a= 0, int _b= 1) : lowBounds(_a), highBounds(_b) {};

    __host__ __device__
    int operator()(const unsigned int n) const
    {
        thrust::default_random_engine rng;
        thrust::uniform_real_distribution<float> dist(lowBounds, highBounds);
        rng.discard(n);
        return dist(rng);
    }
};

template <typename GpuListIterator>
void PrintSocks(const std::string& name, GpuListIterator first, GpuListIterator last)
{
    typedef typename std::iterator_traits<GpuListIterator>::value_type T;

    std::cout << name << ": ";
    thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " "));
    std::cout << "\n";
}

int main()
{
    int numberOfSocks = 10000000;
    GpuList socks(numberOfSocks);
    thrust::transform(thrust::make_counting_iterator(0),
                      thrust::make_counting_iterator(numberOfSocks),
                      socks.begin(),
                      GenerateRandomSockColor(0, 200));

    clock_t start = clock();

    GpuList sortedSocks(socks.size());
    GpuListIterator lastSortedSock = thrust::copy_if(socks.begin(),
                                                     socks.end(),
                                                     sortedSocks.begin(),
                                                     ColoredSockQuery<int>(2));
    clock_t stop = clock();

    PrintSocks("Sorted Socks: ", sortedSocks.begin(), lastSortedSock);

    double elapsed = (double)(stop - start) * 1000.0 / CLOCKS_PER_SEC;
    std::cout << "Time elapsed in ms: " << elapsed << "\n";

    return 0;
}

    //nvcc -std=c++11 -o test test.cu

1000万只袜子的运行时间:9毫秒

每当你拿起袜子时,把它放在一个地方。然后你拿起的下一只袜子,如果它与第一只袜子不匹配,就把它放在第一只袜子旁边。如果是,那就有一对。这样,有多少种组合其实并不重要,而且你挑选的每一只袜子只有两种可能——要么它已经在你的袜子数组中匹配,要么它没有匹配,这意味着你将它添加到数组中的一个位置。

这也意味着你几乎肯定不会把所有袜子都放在阵列中,因为袜子会在搭配时被取下。

作为实际解决方案:

快速制作一堆易于区分的袜子。(用颜色表示)快速整理每一堆,并使用袜子的长度进行比较。作为一个人,你可以很快地决定用哪只袜子进行分区,以避免最坏的情况。(你可以看到多只袜子平行排列,这对你有利!)当垃圾堆达到一个阈值时,停止分类,在该阈值下,您可以立即找到不合适的袜子和短袜

如果你有1000只袜子,有8种颜色,平均分布,你可以在c*n时间内每125只袜子做4堆。以5只袜子为阈值,你可以在6次跑步中对每一堆袜子进行分类。(数2秒把袜子扔到正确的堆上,只需要不到4小时。)

如果你只有60只袜子、3种颜色和2种袜子(你/你妻子的),你可以在1次跑步中对每一堆10只袜子进行分类(同样阈值=5)。(数2秒,需要2分钟)。

最初的桶排序将加快您的进程,因为它在c*n时间内将n个袜子分成k个桶,因此您只需执行c*n*log(k)工作。(不考虑阈值)。所以,你所做的所有关于n*c*(1+log(k))的工作,其中c是把袜子扔在一堆上的时间。

与任何c*x*n+O(1)方法相比,只要log(k)<x-1,该方法将是有利的。


在计算机科学中,这可能很有用:我们有一个n个事物的集合,它们的顺序(长度)和等价关系(额外的信息,例如袜子的颜色)。等价关系允许我们对原始集合进行分区,并且在每个等价类中我们的顺序仍然保持不变。一个事物到它的等价类的映射可以在O(1)中完成,因此只需要O(n)就可以将每个项分配给一个类。现在我们已经使用了额外的信息,可以以任何方式对每个类进行排序。其优点是数据集已经明显更小。

该方法也可以嵌套,如果我们有多个等价关系->使颜色堆积,而不是在纹理上的每个堆积分区内,而不是按长度排序。任何等价关系如果创建一个分区,其中包含2个以上的元素,且大小大致相等,那么与排序相比,排序的速度都会有所提高(前提是我们可以直接将袜子分配给它的堆),并且排序可以在较小的数据集上快速进行。