昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

作为实际解决方案:

快速制作一堆易于区分的袜子。(用颜色表示)快速整理每一堆,并使用袜子的长度进行比较。作为一个人,你可以很快地决定用哪只袜子进行分区,以避免最坏的情况。(你可以看到多只袜子平行排列,这对你有利!)当垃圾堆达到一个阈值时,停止分类,在该阈值下,您可以立即找到不合适的袜子和短袜

如果你有1000只袜子,有8种颜色,平均分布,你可以在c*n时间内每125只袜子做4堆。以5只袜子为阈值,你可以在6次跑步中对每一堆袜子进行分类。(数2秒把袜子扔到正确的堆上,只需要不到4小时。)

如果你只有60只袜子、3种颜色和2种袜子(你/你妻子的),你可以在1次跑步中对每一堆10只袜子进行分类(同样阈值=5)。(数2秒,需要2分钟)。

最初的桶排序将加快您的进程,因为它在c*n时间内将n个袜子分成k个桶,因此您只需执行c*n*log(k)工作。(不考虑阈值)。所以,你所做的所有关于n*c*(1+log(k))的工作,其中c是把袜子扔在一堆上的时间。

与任何c*x*n+O(1)方法相比,只要log(k)<x-1,该方法将是有利的。


在计算机科学中,这可能很有用:我们有一个n个事物的集合,它们的顺序(长度)和等价关系(额外的信息,例如袜子的颜色)。等价关系允许我们对原始集合进行分区,并且在每个等价类中我们的顺序仍然保持不变。一个事物到它的等价类的映射可以在O(1)中完成,因此只需要O(n)就可以将每个项分配给一个类。现在我们已经使用了额外的信息,可以以任何方式对每个类进行排序。其优点是数据集已经明显更小。

该方法也可以嵌套,如果我们有多个等价关系->使颜色堆积,而不是在纹理上的每个堆积分区内,而不是按长度排序。任何等价关系如果创建一个分区,其中包含2个以上的元素,且大小大致相等,那么与排序相比,排序的速度都会有所提高(前提是我们可以直接将袜子分配给它的堆),并且排序可以在较小的数据集上快速进行。

其他回答

理论上的限制是O(n),因为你需要触摸每一只袜子(除非有些袜子已经配对)。

你可以用基数排序实现O(n)。你只需要为桶选择一些属性。

首先你可以选择(她的,我的)-把它们分成两堆,然后使用颜色(可以有任何颜色的顺序,例如按颜色名称的字母顺序)-按颜色将它们分成一堆(记住对同一堆中的所有袜子保持步骤1中的初始顺序),然后袜子的长度,然后是纹理,....

如果您可以选择有限数量的属性,但有足够多的属性可以唯一地标识每对属性,则应该使用O(k*n),如果我们可以考虑k是有限的,则使用O(n)。

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

如果你可以将一双袜子抽象为密钥本身,将另一双袜子作为值,那么我们可以使用哈希来发挥作用。

在你身后的地板上做两个假想的部分,一个给你,另一个给配偶。从袜子堆里取一只。现在,按照以下规则将袜子一只一只地放在地板上。确定袜子是你的还是她的,并查看地板上的相关部分。如果你能在地板上找到这双鞋,就把它捡起来,把它们系起来,或者把它们夹起来,或者在找到一双鞋后做任何你想做的事情,然后把它放在篮子里(把它从地板上取下来)。将其放在相关章节中。重复3次,直到所有袜子都从袜子堆上取下。

说明:

哈希和抽象

抽象是一个非常强大的概念,已用于改善用户体验(UX)。现实生活中与计算机交互的抽象示例包括:

用于在GUI(图形用户界面)中导航以访问地址的文件夹图标,而不是键入实际地址以导航到某个位置。GUI滑块用于控制不同级别的音量、文档滚动位置等。。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

我相信提问者正在考虑使用哈希,这样在放置袜子之前,应该知道袜子的位置。

这就是为什么我建议将放在地板上的一只袜子抽象为哈希键本身(因此不需要复制袜子)。

如何定义哈希键?

如果有不止一双类似的袜子,下面的密钥定义也适用。也就是说,假设有两双黑色男士袜子PairA和PairB,每双袜子都被命名为PairA-L、PairA-R、PairB-L和PairB-R。因此,PairA-L可以与PairB-R配对,但PairA-L和PairB-L不能配对。

假设任何袜子都可以通过以下方式唯一标识,

属性[性别]+属性[颜色]+属性(材质)+属性[类型1]+属性[类别2]+属性[左_右]

这是我们的第一个哈希函数。让我们对这个h1(G_C_M_T1_T2_LR)使用一个简短的符号。h1(x)不是我们的位置键。

消除Left_or_Right属性的另一个哈希函数是h2(G_C_M_T1_T2)。第二个函数h2(x)是我们的位置键!(你身后地板上的空间)。

要定位插槽,请使用h2(G_C_M_T1_T2)。一旦找到了槽,就使用h1(x)来检查它们的哈希值。如果它们不匹配,你就有一对。否则,把袜子扔到同一个槽里。

注意:由于我们在找到一个插槽时删除了一个插槽,因此可以安全地假设最多只有一个插槽具有唯一的h2(x)或h1(x)值。

如果我们每只袜子正好有一对匹配的袜子,那么使用h2(x)来查找位置,如果没有袜子,则需要进行检查,因为可以安全地假设它们是一对。

为什么把袜子放在地板上很重要

让我们考虑一个场景,袜子堆在一起(最坏的情况)。这意味着我们别无选择,只能进行线性搜索来找到一对。

将它们铺在地板上可以提高可见度,从而提高发现匹配袜子(匹配哈希键)的机会。当第三步把袜子放在地板上时,我们的大脑已经下意识地记录了位置。-因此,如果这个位置在我们的内存中可用,我们可以直接找到匹配的配对。-如果没有记住位置,不要担心,然后我们可以一直返回到线性搜索。

为什么从地板上取下这对鞋很重要?

短期人类记忆在需要记忆的项目较少时效果最好。因此,增加了我们使用哈希来识别这对的概率。当使用线性搜索对时,它还将减少要搜索的项目的数量。

分析

情况1:最坏的情况是,Derpina无法记住或直接使用哈希技术在地板上发现袜子。Derp对地板上的物品进行线性搜索。这并不比遍历堆以找到对更糟。比较上限:O(n^2)。比较下限:(n/2)。(当Derpina每捡一只袜子都是上一只的时候)。案例2:德普记得他放在地板上的每一只袜子的位置,每只袜子正好有一双。比较上限:O(n/2)。比较下限:O(n/2)。

我说的是比较操作,从袜子堆里挑选袜子必然是n次操作。因此,实际的下限是n次迭代,n/2次比较。

加快进度

为了获得完美的分数,使Derp获得O(n/2)比较,我建议Derpina,

花更多时间穿袜子来熟悉它。是的,这意味着也要花更多时间穿着德普的袜子。玩记忆游戏,如在网格中找出对,可以提高短期记忆性能,这是非常有益的。

这是否等同于元素清晰度问题?

我建议的方法是用于解决元素区分问题的方法之一,将它们放在哈希表中并进行比较。

考虑到您的特殊情况,即只有一个精确的对,它已经变得非常等价于元素区别问题。因为我们甚至可以对袜子进行分类,并检查相邻袜子是否成对(EDP的另一种解决方案)。

然而,如果给定袜子可能存在不止一双,那么它就偏离了EDP。

我希望我能为这个问题贡献一些新的东西。我注意到,所有的答案都忽略了这样一个事实,即在不降低整体洗衣性能的情况下,有两点可以执行预处理。

此外,即使是大家庭,我们也不需要假设有大量袜子。袜子从抽屉中取出并穿上,然后在洗衣服之前,将它们扔到一个地方(可能是一个垃圾箱)。虽然我不会将所说的垃圾箱称为后进先出堆栈,但我认为可以安全地假设

人们把两只袜子大致扔在箱子箱子在任何时候都不会随机化,因此从该容器顶部获取的任何子集通常都包含一双袜子。

由于我所知道的所有洗衣机的尺寸都是有限的(不管你要洗多少袜子),而且洗衣机中会发生实际的随机性,所以无论我们有多少袜子,我们总是有几乎不含单品的小子集。

我们的两个预处理阶段是“把袜子放在晾衣绳上”和“把袜子从晾衣绳里拿出来”,我们必须这样做,这样才能得到既干净又干燥的袜子。和洗衣机一样,晾衣绳是有限的,我假设我们可以看到袜子的整个部分。

以下是put_socks_on_ine()的算法:

while (socks left in basket) {
 take_sock();
 if (cluster of similar socks is present) { 
   Add sock to cluster (if possible, next to the matching pair)
 } else {
  Hang it somewhere on the line, this is now a new cluster of similar-looking socks.      
  Leave enough space around this sock to add other socks later on 
 }
}

不要浪费时间四处移动袜子或寻找最佳搭配,这一切都应该在O(n)中完成,这也是我们将它们放在未分类的线上所需要的。袜子还没有配对,我们只有几个相似的簇。我们这里有一套有限的袜子是很有帮助的,因为这有助于我们创建“好”的簇(例如,如果这套袜子中只有黑色的袜子,那么按颜色簇就不是办法了)

下面是take_socks_from_line()的算法:

while(socks left on line) {
 take_next_sock();
 if (matching pair visible on line or in basket) {
   Take it as well, pair 'em and put 'em away
 } else {
   put the sock in the basket
 }

我应该指出,为了提高其余步骤的速度,明智的做法是不要随机选择下一个袜子,而是从每个簇中依次选择一个又一个袜子。这两个预处理步骤只需要将袜子放在晾衣绳上或放在篮子里,这是我们无论做什么都必须做的,因此这将大大提高洗衣性能。

在此之后,很容易执行哈希分区算法。通常,大约75%的袜子已经配对,给我留下了非常小的袜子子集,并且这个子集已经(有点)聚类(在预处理步骤之后,我没有在我的篮子中引入太多熵)。另一件事是,剩余的集群往往足够小,可以一次处理,因此可以从篮子中取出整个集群。

下面是sort_maining_clusters()的算法:

while(clusters present in basket) {
  Take out the cluster and spread it
  Process it immediately
  Leave remaining socks where they are
}

之后,只剩下几只袜子了。在这里,我将之前未配对的袜子引入到系统中,并在不使用任何特殊算法的情况下处理剩余的袜子——剩余的袜子非常少,可以非常快速地进行视觉处理。

对于所有剩余的袜子,我假设它们的同伴仍然没有洗,并将它们放在一边,以备下次迭代。如果你记录了一段时间内未配对袜子的增长(“袜子泄漏”),你应该检查你的垃圾箱——它可能会随机出现(你有猫睡在里面吗?)

我知道这些算法需要很多假设:一个充当某种LIFO堆栈的垃圾箱,一台有限的普通洗衣机,以及一条有限的普通晾衣绳——但这仍然适用于大量袜子。

关于并行性:只要你把两个袜子放在同一个箱子里,你就可以很容易地并行化所有这些步骤。

这是基于比较的模型中的Omega(n log n)下限。(唯一有效的操作是比较两只袜子。)

假设你知道你的2n只袜子是这样排列的:

p1 p2 p3。。。pn pf(1)pf(2)。。。功率因数(n)

其中f是集合{1,2,…,n}的未知排列。知道这一点不会使问题变得更难。有n个!可能的输出(上半部分和下半部分之间的匹配),这意味着您需要log(n!)=Omega(n log n)比较。这可通过分类获得。

由于您对元素区别性问题的连接感兴趣:证明元素区别性的Omega(n log n)界限比较困难,因为输出是二进制的yes/no。这里,输出必须是匹配的,并且可能输出的数量足以获得一个合适的界限。然而,有一个变量与元素的区别有关。假设你有2n只袜子,想知道它们是否可以唯一配对。您可以通过将(a1,a2,…,an)发送到(a1,a1,a2、a2,…、an,an)来获得ED的缩减。(附带地,通过拓扑结构,ED的硬度证明非常有趣。)

我认为,如果只允许等式测试,那么原始问题应该有一个Omega(n2)边界。我的直觉是:考虑一个测试后添加边的图形,并认为如果图形不密集,则输出不是唯一确定的。