昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

从你的问题来看,你显然没有太多洗衣方面的实际经验:)。你需要一种算法,能很好地处理少量不可配对的袜子。

到目前为止,答案还没有充分利用我们的人类模式识别能力。集合游戏提供了如何做好这一点的线索:将所有袜子放在一个二维空间中,这样你就可以很好地识别它们,并用手轻松地够到它们。这将您的面积限制在120*80厘米左右。从那里选择您识别的配对并将其删除。将多余的袜子放在空闲空间,然后重复。如果你为穿着容易辨认的袜子的人洗衣服(脑海中浮现的是小孩子),你可以先选择袜子来进行基数排序。该算法仅在单袜子数量较少时有效

其他回答

作为实际解决方案:

快速制作一堆易于区分的袜子。(用颜色表示)快速整理每一堆,并使用袜子的长度进行比较。作为一个人,你可以很快地决定用哪只袜子进行分区,以避免最坏的情况。(你可以看到多只袜子平行排列,这对你有利!)当垃圾堆达到一个阈值时,停止分类,在该阈值下,您可以立即找到不合适的袜子和短袜

如果你有1000只袜子,有8种颜色,平均分布,你可以在c*n时间内每125只袜子做4堆。以5只袜子为阈值,你可以在6次跑步中对每一堆袜子进行分类。(数2秒把袜子扔到正确的堆上,只需要不到4小时。)

如果你只有60只袜子、3种颜色和2种袜子(你/你妻子的),你可以在1次跑步中对每一堆10只袜子进行分类(同样阈值=5)。(数2秒,需要2分钟)。

最初的桶排序将加快您的进程,因为它在c*n时间内将n个袜子分成k个桶,因此您只需执行c*n*log(k)工作。(不考虑阈值)。所以,你所做的所有关于n*c*(1+log(k))的工作,其中c是把袜子扔在一堆上的时间。

与任何c*x*n+O(1)方法相比,只要log(k)<x-1,该方法将是有利的。


在计算机科学中,这可能很有用:我们有一个n个事物的集合,它们的顺序(长度)和等价关系(额外的信息,例如袜子的颜色)。等价关系允许我们对原始集合进行分区,并且在每个等价类中我们的顺序仍然保持不变。一个事物到它的等价类的映射可以在O(1)中完成,因此只需要O(n)就可以将每个项分配给一个类。现在我们已经使用了额外的信息,可以以任何方式对每个类进行排序。其优点是数据集已经明显更小。

该方法也可以嵌套,如果我们有多个等价关系->使颜色堆积,而不是在纹理上的每个堆积分区内,而不是按长度排序。任何等价关系如果创建一个分区,其中包含2个以上的元素,且大小大致相等,那么与排序相比,排序的速度都会有所提高(前提是我们可以直接将袜子分配给它的堆),并且排序可以在较小的数据集上快速进行。

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。

我提出了另一个解决方案,它不会承诺更少的操作,也不会减少时间消耗,但应该尝试看看它是否能成为一个足够好的启发式方法,在大量袜子配对中提供更少的时间消耗。

前提条件:不能保证有相同的袜子。如果它们的颜色相同,并不意味着它们的大小或图案相同。袜子随机洗牌。袜子的数量可能是奇数(有些不见了,我们不知道有多少)。准备记住一个变量“index”并将其设置为0。

结果将有一个或两个桩:1。“匹配”和2。“缺少”

启发式:

找到最与众不同的袜子。找到匹配项。如果没有匹配项,请将其放在“缺失”堆上。从1开始重复。直到没有最与众不同的袜子。如果袜子少于6只,请转到11只。盲目地将所有袜子与邻居配对(不要打包)找到所有匹配的对,将其打包并将打包的对移动到“匹配”的堆中;如果没有新的匹配项-将“索引”增加1如果“index”大于2(这可能取决于袜子的值因为袜子数量越多盲目配对)进入11打乱其余的转到1忘记“索引”挑选一只袜子查找其配对如果没有袜子,就把它移到“失踪”的那一堆如果找到匹配项,将其配对,将其打包并移动到“匹配”堆中如果还有不止一只袜子,那就去12只如果只剩下一个,请转到14满意的微笑:)

此外,还可以添加检查袜子是否损坏,就像移除袜子一样。它可以插入2到3之间,13到14之间。

我期待听到任何经验或更正。

案例1:所有袜子都是一样的(顺便说一句,这是我在现实生活中所做的)。

选择其中的任意两个组成一对。恒定时间。

案例2:有固定数量的组合(所有权、颜色、大小、纹理等)。

使用基数排序。这只是线性时间,因为不需要比较。

情况3:组合的数量事先未知(一般情况)。

我们必须进行比较,以检查两只袜子是否成对。选择基于O(n log n)比较的排序算法之一。

然而,在现实生活中,当袜子的数量相对较少(恒定)时,这些理论上的优化算法将无法很好地工作。这可能比顺序搜索花费更多的时间,理论上需要二次时间。

我希望我能为这个问题贡献一些新的东西。我注意到,所有的答案都忽略了这样一个事实,即在不降低整体洗衣性能的情况下,有两点可以执行预处理。

此外,即使是大家庭,我们也不需要假设有大量袜子。袜子从抽屉中取出并穿上,然后在洗衣服之前,将它们扔到一个地方(可能是一个垃圾箱)。虽然我不会将所说的垃圾箱称为后进先出堆栈,但我认为可以安全地假设

人们把两只袜子大致扔在箱子箱子在任何时候都不会随机化,因此从该容器顶部获取的任何子集通常都包含一双袜子。

由于我所知道的所有洗衣机的尺寸都是有限的(不管你要洗多少袜子),而且洗衣机中会发生实际的随机性,所以无论我们有多少袜子,我们总是有几乎不含单品的小子集。

我们的两个预处理阶段是“把袜子放在晾衣绳上”和“把袜子从晾衣绳里拿出来”,我们必须这样做,这样才能得到既干净又干燥的袜子。和洗衣机一样,晾衣绳是有限的,我假设我们可以看到袜子的整个部分。

以下是put_socks_on_ine()的算法:

while (socks left in basket) {
 take_sock();
 if (cluster of similar socks is present) { 
   Add sock to cluster (if possible, next to the matching pair)
 } else {
  Hang it somewhere on the line, this is now a new cluster of similar-looking socks.      
  Leave enough space around this sock to add other socks later on 
 }
}

不要浪费时间四处移动袜子或寻找最佳搭配,这一切都应该在O(n)中完成,这也是我们将它们放在未分类的线上所需要的。袜子还没有配对,我们只有几个相似的簇。我们这里有一套有限的袜子是很有帮助的,因为这有助于我们创建“好”的簇(例如,如果这套袜子中只有黑色的袜子,那么按颜色簇就不是办法了)

下面是take_socks_from_line()的算法:

while(socks left on line) {
 take_next_sock();
 if (matching pair visible on line or in basket) {
   Take it as well, pair 'em and put 'em away
 } else {
   put the sock in the basket
 }

我应该指出,为了提高其余步骤的速度,明智的做法是不要随机选择下一个袜子,而是从每个簇中依次选择一个又一个袜子。这两个预处理步骤只需要将袜子放在晾衣绳上或放在篮子里,这是我们无论做什么都必须做的,因此这将大大提高洗衣性能。

在此之后,很容易执行哈希分区算法。通常,大约75%的袜子已经配对,给我留下了非常小的袜子子集,并且这个子集已经(有点)聚类(在预处理步骤之后,我没有在我的篮子中引入太多熵)。另一件事是,剩余的集群往往足够小,可以一次处理,因此可以从篮子中取出整个集群。

下面是sort_maining_clusters()的算法:

while(clusters present in basket) {
  Take out the cluster and spread it
  Process it immediately
  Leave remaining socks where they are
}

之后,只剩下几只袜子了。在这里,我将之前未配对的袜子引入到系统中,并在不使用任何特殊算法的情况下处理剩余的袜子——剩余的袜子非常少,可以非常快速地进行视觉处理。

对于所有剩余的袜子,我假设它们的同伴仍然没有洗,并将它们放在一边,以备下次迭代。如果你记录了一段时间内未配对袜子的增长(“袜子泄漏”),你应该检查你的垃圾箱——它可能会随机出现(你有猫睡在里面吗?)

我知道这些算法需要很多假设:一个充当某种LIFO堆栈的垃圾箱,一台有限的普通洗衣机,以及一条有限的普通晾衣绳——但这仍然适用于大量袜子。

关于并行性:只要你把两个袜子放在同一个箱子里,你就可以很容易地并行化所有这些步骤。