昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

从你的问题来看,你显然没有太多洗衣方面的实际经验:)。你需要一种算法,能很好地处理少量不可配对的袜子。

到目前为止,答案还没有充分利用我们的人类模式识别能力。集合游戏提供了如何做好这一点的线索:将所有袜子放在一个二维空间中,这样你就可以很好地识别它们,并用手轻松地够到它们。这将您的面积限制在120*80厘米左右。从那里选择您识别的配对并将其删除。将多余的袜子放在空闲空间,然后重复。如果你为穿着容易辨认的袜子的人洗衣服(脑海中浮现的是小孩子),你可以先选择袜子来进行基数排序。该算法仅在单袜子数量较少时有效

其他回答

案例1:所有袜子都是一样的(顺便说一句,这是我在现实生活中所做的)。

选择其中的任意两个组成一对。恒定时间。

案例2:有固定数量的组合(所有权、颜色、大小、纹理等)。

使用基数排序。这只是线性时间,因为不需要比较。

情况3:组合的数量事先未知(一般情况)。

我们必须进行比较,以检查两只袜子是否成对。选择基于O(n log n)比较的排序算法之一。

然而,在现实生活中,当袜子的数量相对较少(恒定)时,这些理论上的优化算法将无法很好地工作。这可能比顺序搜索花费更多的时间,理论上需要二次时间。

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

成本:移动袜子->高,查找/搜索袜子排成一排->小

我们想做的是减少移动次数,并用搜索次数进行补偿。此外,我们还可以利用智人的多威胁环境,在解密缓存中保存更多的东西。

X=您的,Y=您的配偶

从所有袜子的A堆开始:

选择两个袜子,将相应的X袜子放在X线上,将Y袜子放在Y线上的下一个可用位置。

直到A为空。

对于每行X和Y

选择行中的第一只袜子,沿着行搜索,直到找到相应的袜子。放入相应的袜子成品线。可选当您搜索线条时,当前正在查看的袜子与之前的袜子相同,请对这些袜子执行步骤2。

可选地,在第一步中,您从该行中拾取两个袜子,而不是两个,因为缓存内存足够大,我们可以快速识别其中一个袜子是否与您正在观察的行上的当前袜子匹配。如果你有幸拥有三只手臂,那么考虑到受试者的记忆足够大,你可以同时解析三只袜子。

直到X和Y都为空。

Done

然而,由于这与选择排序具有相似的复杂性,由于I/O(移动袜子)和搜索(搜索袜子的行)的速度,所花费的时间要少得多。

一种有效的袜子配对算法

前提条件

堆里必须至少有一只袜子桌子必须足够大,以容纳N/2袜子(最坏情况),其中N是总数袜子。

算法

Try:

挑选第一只袜子把它放在桌子上选择下一只袜子,然后看看它(可能会把“不再有袜子”扔到袜子堆里)现在扫描桌子上的袜子(如果桌子上没有袜子,则抛出异常)有匹配的吗?a) 是=>从桌子上取下匹配的袜子b) no=>将袜子放在桌子上(可能会抛出“桌子不够大”异常)

除了:

桌子不够大:小心地将所有未配对的袜子混合在一起,然后继续操作//此操作将导致一个新的堆和一个空表桌子上没有袜子:扔(最后一只不受欢迎的袜子)堆里没有袜子:出口洗衣房

最后:

如果袜子堆里还有袜子:转到3

已知问题

如果或周围没有表,算法将进入无限循环桌子上没有足够的地方容纳至少一只袜子。

可能的改进

根据要分拣的袜子数量,吞吐量可能是通过整理桌子上的袜子来增加空间

为了使其工作,需要一个具有唯一每双袜子的价值。这样的属性很容易根据袜子的视觉财产合成。

按所述属性对桌上的袜子进行排序。让我们调用该属性“颜色”。将袜子排成一排,并将深色袜子放在右侧(即push_back()),左侧(即。.push_front())

对于大量的袜子,尤其是以前看不见的袜子,属性合成可能需要很长时间,因此吞吐量将明显下降。但是,这些属性可以保存在内存中并重用。

需要进行一些研究来评估这种可能性的效率改善出现以下问题:

上述袜子的最佳搭配数量是多少改善对于给定数量的袜子,之前需要多少次迭代吞吐量增加?a) 用于最后一次迭代b) 对于所有迭代

符合MCVE指南的PoC:

#include <iostream>
#include <vector>
#include <string>
#include <time.h>

using namespace std;

struct pileOfsocks {
    pileOfsocks(int pairCount = 42) :
        elemCount(pairCount<<1) {
        srand(time(NULL));
        socks.resize(elemCount);

        vector<int> used_colors;
        vector<int> used_indices;

        auto getOne = [](vector<int>& v, int c) {
            int r;
            do {
                r = rand() % c;
            } while (find(v.begin(), v.end(), r) != v.end());
            v.push_back(r);
            return r;
        };

        for (auto i = 0; i < pairCount; i++) {
            auto sock_color = getOne(used_colors, INT_MAX);
            socks[getOne(used_indices, elemCount)] = sock_color;
            socks[getOne(used_indices, elemCount)] = sock_color;
        }
    }

    void show(const string& prompt) {
        cout << prompt << ":" << endl;
        for (auto i = 0; i < socks.size(); i++){
            cout << socks[i] << " ";
        }
        cout << endl;
    }

    void pair() {
        for (auto i = 0; i < socks.size(); i++) {
            std::vector<int>::iterator it = find(unpaired_socks.begin(), unpaired_socks.end(), socks[i]);
            if (it != unpaired_socks.end()) {
                unpaired_socks.erase(it);
                paired_socks.push_back(socks[i]);
                paired_socks.push_back(socks[i]);
            }
            else
                unpaired_socks.push_back(socks[i]);
        }

        socks = paired_socks;
        paired_socks.clear();
    }

private:
    int elemCount;
    vector<int> socks;
    vector<int> unpaired_socks;
    vector<int> paired_socks;
};

int main() {
    pileOfsocks socks;

    socks.show("unpaired socks");
    socks.pair();
    socks.show("paired socks");

    system("pause");
    return 0;
}

我已经采取了简单的步骤,将我的努力减少到一个需要O(1)时间的过程中。

通过将我的输入减少到两种袜子中的一种(休闲用的白色袜子,工作用的黑色袜子),我只需要确定手中有哪种袜子。(从技术上讲,由于它们从未一起清洗过,我已将过程缩短到O(0)时间。)

为了找到合适的袜子,需要提前付出一些努力,并购买足够数量的袜子,以消除对现有袜子的需求。因为我在需要黑色袜子之前就已经做了这件事,所以我的努力很小,但里程可能会有所不同。

这种前期工作在非常流行和有效的代码中已经多次出现。示例包括#DEFINE'将圆周率定义为几个小数(其他示例也存在,但这是我现在想到的)。