昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。
作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。
哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。
因此,问题基本上是:
给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)
我将感谢回答以下方面的问题:
大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?
非算法答案,但当我这样做时“高效”:
步骤1)丢弃所有现有袜子第2步)去沃尔玛买10-n包的白色和m包黑色。日常无需其他颜色生活
然而,有时,我不得不再次这样做(丢失的袜子、损坏的袜子等),我讨厌太频繁地丢弃完美的袜子(我希望他们继续出售相同的袜子参考!),所以我最近采取了不同的方法。
算法答案:
考虑一下,如果你只为第二叠袜子画一只袜子,就像你正在做的那样,你在天真的搜索中找到匹配袜子的几率很低。
所以,随机挑选其中五个,记住它们的形状或长度。
为什么是五?通常情况下,人类在工作记忆中记住五到七个不同的元素是很好的——有点像RPN堆栈的人类等价物——五个是安全的默认值。
从2n-5的堆栈中选择一个。现在,在你画的五个图案中寻找一个匹配(视觉模式匹配-人类擅长用一个小堆栈),如果你没有找到一个,那么把它添加到你的五个。继续从袜子堆中随机挑选袜子,并与你的5+1袜子进行比较。随着堆栈的增长,它会降低性能,但会提高赔率。快得多。
请随意写下公式,以计算50%的匹配几率需要抽取多少样本。IIRC这是一个超几何定律。
我每天早上都会这样做,很少需要三次以上的平局——但我有n双类似的m形白袜子(大约10双,不分输赢)。现在你可以估计我的股票堆的大小:-)
顺便说一句,我发现,每次我需要一双袜子时,整理所有袜子的交易成本之和远远少于一次整理和装订袜子。准时制的效果更好,因为这样你就不必绑袜子了,而且边际回报也在减少(也就是说,当你在洗衣店的某个地方时,你一直在寻找那两到三只袜子,而你需要完成袜子的搭配,而你却在这上面浪费了时间)。
两种思路,查找任何匹配项所需的速度,与查找所有匹配项所需要的速度相比,与存储相比。
对于第二种情况,我想指出一个GPU并行版本,它查询所有匹配的袜子。
如果您有多个要匹配的财产,则可以使用分组元组和更高级的zip迭代器以及推力的转换函数,尽管这里是一个基于GPU的简单查询:
//test.cu
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/copy.h>
#include <thrust/count.h>
#include <thrust/remove.h>
#include <thrust/random.h>
#include <iostream>
#include <iterator>
#include <string>
// Define some types for pseudo code readability
typedef thrust::device_vector<int> GpuList;
typedef GpuList::iterator GpuListIterator;
template <typename T>
struct ColoredSockQuery : public thrust::unary_function<T,bool>
{
ColoredSockQuery( int colorToSearch )
{ SockColor = colorToSearch; }
int SockColor;
__host__ __device__
bool operator()(T x)
{
return x == SockColor;
}
};
struct GenerateRandomSockColor
{
float lowBounds, highBounds;
__host__ __device__
GenerateRandomSockColor(int _a= 0, int _b= 1) : lowBounds(_a), highBounds(_b) {};
__host__ __device__
int operator()(const unsigned int n) const
{
thrust::default_random_engine rng;
thrust::uniform_real_distribution<float> dist(lowBounds, highBounds);
rng.discard(n);
return dist(rng);
}
};
template <typename GpuListIterator>
void PrintSocks(const std::string& name, GpuListIterator first, GpuListIterator last)
{
typedef typename std::iterator_traits<GpuListIterator>::value_type T;
std::cout << name << ": ";
thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " "));
std::cout << "\n";
}
int main()
{
int numberOfSocks = 10000000;
GpuList socks(numberOfSocks);
thrust::transform(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(numberOfSocks),
socks.begin(),
GenerateRandomSockColor(0, 200));
clock_t start = clock();
GpuList sortedSocks(socks.size());
GpuListIterator lastSortedSock = thrust::copy_if(socks.begin(),
socks.end(),
sortedSocks.begin(),
ColoredSockQuery<int>(2));
clock_t stop = clock();
PrintSocks("Sorted Socks: ", sortedSocks.begin(), lastSortedSock);
double elapsed = (double)(stop - start) * 1000.0 / CLOCKS_PER_SEC;
std::cout << "Time elapsed in ms: " << elapsed << "\n";
return 0;
}
//nvcc -std=c++11 -o test test.cu
1000万只袜子的运行时间:9毫秒
我提出了另一个解决方案,它不会承诺更少的操作,也不会减少时间消耗,但应该尝试看看它是否能成为一个足够好的启发式方法,在大量袜子配对中提供更少的时间消耗。
前提条件:不能保证有相同的袜子。如果它们的颜色相同,并不意味着它们的大小或图案相同。袜子随机洗牌。袜子的数量可能是奇数(有些不见了,我们不知道有多少)。准备记住一个变量“index”并将其设置为0。
结果将有一个或两个桩:1。“匹配”和2。“缺少”
启发式:
找到最与众不同的袜子。找到匹配项。如果没有匹配项,请将其放在“缺失”堆上。从1开始重复。直到没有最与众不同的袜子。如果袜子少于6只,请转到11只。盲目地将所有袜子与邻居配对(不要打包)找到所有匹配的对,将其打包并将打包的对移动到“匹配”的堆中;如果没有新的匹配项-将“索引”增加1如果“index”大于2(这可能取决于袜子的值因为袜子数量越多盲目配对)进入11打乱其余的转到1忘记“索引”挑选一只袜子查找其配对如果没有袜子,就把它移到“失踪”的那一堆如果找到匹配项,将其配对,将其打包并移动到“匹配”堆中如果还有不止一只袜子,那就去12只如果只剩下一个,请转到14满意的微笑:)
此外,还可以添加检查袜子是否损坏,就像移除袜子一样。它可以插入2到3之间,13到14之间。
我期待听到任何经验或更正。