昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我刚刚完成袜子配对,我发现最好的方法是:

选择一只袜子并将其收起来(为这双袜子创建一个“水桶”)如果下一个是上一个的一对,则将其放到现有的存储桶中,否则创建一个新的存储桶。

在最坏的情况下,这意味着您将有n/2个不同的存储桶,并且您将有n-2个关于哪个存储桶包含当前袜子的确定。显然,如果你只有几对,这个算法会很好地工作;我用了12双鞋。

它不是那么科学,但它工作得很好:)

其他回答

我希望我能为这个问题贡献一些新的东西。我注意到,所有的答案都忽略了这样一个事实,即在不降低整体洗衣性能的情况下,有两点可以执行预处理。

此外,即使是大家庭,我们也不需要假设有大量袜子。袜子从抽屉中取出并穿上,然后在洗衣服之前,将它们扔到一个地方(可能是一个垃圾箱)。虽然我不会将所说的垃圾箱称为后进先出堆栈,但我认为可以安全地假设

人们把两只袜子大致扔在箱子箱子在任何时候都不会随机化,因此从该容器顶部获取的任何子集通常都包含一双袜子。

由于我所知道的所有洗衣机的尺寸都是有限的(不管你要洗多少袜子),而且洗衣机中会发生实际的随机性,所以无论我们有多少袜子,我们总是有几乎不含单品的小子集。

我们的两个预处理阶段是“把袜子放在晾衣绳上”和“把袜子从晾衣绳里拿出来”,我们必须这样做,这样才能得到既干净又干燥的袜子。和洗衣机一样,晾衣绳是有限的,我假设我们可以看到袜子的整个部分。

以下是put_socks_on_ine()的算法:

while (socks left in basket) {
 take_sock();
 if (cluster of similar socks is present) { 
   Add sock to cluster (if possible, next to the matching pair)
 } else {
  Hang it somewhere on the line, this is now a new cluster of similar-looking socks.      
  Leave enough space around this sock to add other socks later on 
 }
}

不要浪费时间四处移动袜子或寻找最佳搭配,这一切都应该在O(n)中完成,这也是我们将它们放在未分类的线上所需要的。袜子还没有配对,我们只有几个相似的簇。我们这里有一套有限的袜子是很有帮助的,因为这有助于我们创建“好”的簇(例如,如果这套袜子中只有黑色的袜子,那么按颜色簇就不是办法了)

下面是take_socks_from_line()的算法:

while(socks left on line) {
 take_next_sock();
 if (matching pair visible on line or in basket) {
   Take it as well, pair 'em and put 'em away
 } else {
   put the sock in the basket
 }

我应该指出,为了提高其余步骤的速度,明智的做法是不要随机选择下一个袜子,而是从每个簇中依次选择一个又一个袜子。这两个预处理步骤只需要将袜子放在晾衣绳上或放在篮子里,这是我们无论做什么都必须做的,因此这将大大提高洗衣性能。

在此之后,很容易执行哈希分区算法。通常,大约75%的袜子已经配对,给我留下了非常小的袜子子集,并且这个子集已经(有点)聚类(在预处理步骤之后,我没有在我的篮子中引入太多熵)。另一件事是,剩余的集群往往足够小,可以一次处理,因此可以从篮子中取出整个集群。

下面是sort_maining_clusters()的算法:

while(clusters present in basket) {
  Take out the cluster and spread it
  Process it immediately
  Leave remaining socks where they are
}

之后,只剩下几只袜子了。在这里,我将之前未配对的袜子引入到系统中,并在不使用任何特殊算法的情况下处理剩余的袜子——剩余的袜子非常少,可以非常快速地进行视觉处理。

对于所有剩余的袜子,我假设它们的同伴仍然没有洗,并将它们放在一边,以备下次迭代。如果你记录了一段时间内未配对袜子的增长(“袜子泄漏”),你应该检查你的垃圾箱——它可能会随机出现(你有猫睡在里面吗?)

我知道这些算法需要很多假设:一个充当某种LIFO堆栈的垃圾箱,一台有限的普通洗衣机,以及一条有限的普通晾衣绳——但这仍然适用于大量袜子。

关于并行性:只要你把两个袜子放在同一个箱子里,你就可以很容易地并行化所有这些步骤。

拿起第一只袜子放在桌子上。现在再挑一只袜子;如果它与第一个拾取的匹配,请将其放在第一个拾取上。如果没有,把它放在桌子上,离第一个小距离。挑选第三只袜子;如果它与前两个匹配,请将它放在它们的上面,或者将它放置在距离第三个的一小段距离处。重复上述步骤,直到你捡起所有袜子。

一种有效的袜子配对算法

前提条件

堆里必须至少有一只袜子桌子必须足够大,以容纳N/2袜子(最坏情况),其中N是总数袜子。

算法

Try:

挑选第一只袜子把它放在桌子上选择下一只袜子,然后看看它(可能会把“不再有袜子”扔到袜子堆里)现在扫描桌子上的袜子(如果桌子上没有袜子,则抛出异常)有匹配的吗?a) 是=>从桌子上取下匹配的袜子b) no=>将袜子放在桌子上(可能会抛出“桌子不够大”异常)

除了:

桌子不够大:小心地将所有未配对的袜子混合在一起,然后继续操作//此操作将导致一个新的堆和一个空表桌子上没有袜子:扔(最后一只不受欢迎的袜子)堆里没有袜子:出口洗衣房

最后:

如果袜子堆里还有袜子:转到3

已知问题

如果或周围没有表,算法将进入无限循环桌子上没有足够的地方容纳至少一只袜子。

可能的改进

根据要分拣的袜子数量,吞吐量可能是通过整理桌子上的袜子来增加空间

为了使其工作,需要一个具有唯一每双袜子的价值。这样的属性很容易根据袜子的视觉财产合成。

按所述属性对桌上的袜子进行排序。让我们调用该属性“颜色”。将袜子排成一排,并将深色袜子放在右侧(即push_back()),左侧(即。.push_front())

对于大量的袜子,尤其是以前看不见的袜子,属性合成可能需要很长时间,因此吞吐量将明显下降。但是,这些属性可以保存在内存中并重用。

需要进行一些研究来评估这种可能性的效率改善出现以下问题:

上述袜子的最佳搭配数量是多少改善对于给定数量的袜子,之前需要多少次迭代吞吐量增加?a) 用于最后一次迭代b) 对于所有迭代

符合MCVE指南的PoC:

#include <iostream>
#include <vector>
#include <string>
#include <time.h>

using namespace std;

struct pileOfsocks {
    pileOfsocks(int pairCount = 42) :
        elemCount(pairCount<<1) {
        srand(time(NULL));
        socks.resize(elemCount);

        vector<int> used_colors;
        vector<int> used_indices;

        auto getOne = [](vector<int>& v, int c) {
            int r;
            do {
                r = rand() % c;
            } while (find(v.begin(), v.end(), r) != v.end());
            v.push_back(r);
            return r;
        };

        for (auto i = 0; i < pairCount; i++) {
            auto sock_color = getOne(used_colors, INT_MAX);
            socks[getOne(used_indices, elemCount)] = sock_color;
            socks[getOne(used_indices, elemCount)] = sock_color;
        }
    }

    void show(const string& prompt) {
        cout << prompt << ":" << endl;
        for (auto i = 0; i < socks.size(); i++){
            cout << socks[i] << " ";
        }
        cout << endl;
    }

    void pair() {
        for (auto i = 0; i < socks.size(); i++) {
            std::vector<int>::iterator it = find(unpaired_socks.begin(), unpaired_socks.end(), socks[i]);
            if (it != unpaired_socks.end()) {
                unpaired_socks.erase(it);
                paired_socks.push_back(socks[i]);
                paired_socks.push_back(socks[i]);
            }
            else
                unpaired_socks.push_back(socks[i]);
        }

        socks = paired_socks;
        paired_socks.clear();
    }

private:
    int elemCount;
    vector<int> socks;
    vector<int> unpaired_socks;
    vector<int> paired_socks;
};

int main() {
    pileOfsocks socks;

    socks.show("unpaired socks");
    socks.pair();
    socks.show("paired socks");

    system("pause");
    return 0;
}

我的解决方案并不完全符合您的要求,因为它正式需要O(n)“额外”空间。然而,考虑到我的条件,它在我的实际应用中非常有效。因此,我认为这应该很有趣。

与其他任务合并

我的特殊情况是,我不用烘干机,只是把衣服挂在普通的烘干机上。挂布需要O(n)操作(顺便说一句,我在这里总是考虑垃圾箱包装问题),这个问题本质上需要线性的“额外”空间。当我从桶里拿出一只新袜子时,如果这双袜子已经挂好了,我会试着把它挂在旁边。如果是新袜子,我会在旁边留出一些空间。

Oracle机器更好;-)

显然,这需要一些额外的工作来检查是否有匹配的袜子已经挂在某个地方,这将为计算机提供系数约为1/2的解O(n^2)。但在这种情况下,“人为因素”实际上是一种优势——如果匹配的袜子已经挂起,我通常可以很快(几乎为O(1))识别出它(可能涉及到大脑缓存中的一些难以察觉的因素)——将其视为一种有限的“预言机”,如oracle Machine;-)我们人类在某些情况下比数字机器有这些优势;-)

快到O(n)!

因此,将袜子配对的问题与挂布的问题联系起来,我可以免费获得O(n)“额外的空间”,并有一个及时的解决方案,大约O(n),只需要比简单的挂布多一点的工作,即使在非常糟糕的星期一早晨,也可以立即获得一双完整的袜子…;-)

成本:移动袜子->高,查找/搜索袜子排成一排->小

我们想做的是减少移动次数,并用搜索次数进行补偿。此外,我们还可以利用智人的多威胁环境,在解密缓存中保存更多的东西。

X=您的,Y=您的配偶

从所有袜子的A堆开始:

选择两个袜子,将相应的X袜子放在X线上,将Y袜子放在Y线上的下一个可用位置。

直到A为空。

对于每行X和Y

选择行中的第一只袜子,沿着行搜索,直到找到相应的袜子。放入相应的袜子成品线。可选当您搜索线条时,当前正在查看的袜子与之前的袜子相同,请对这些袜子执行步骤2。

可选地,在第一步中,您从该行中拾取两个袜子,而不是两个,因为缓存内存足够大,我们可以快速识别其中一个袜子是否与您正在观察的行上的当前袜子匹配。如果你有幸拥有三只手臂,那么考虑到受试者的记忆足够大,你可以同时解析三只袜子。

直到X和Y都为空。

Done

然而,由于这与选择排序具有相似的复杂性,由于I/O(移动袜子)和搜索(搜索袜子的行)的速度,所花费的时间要少得多。