昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我刚刚完成袜子配对,我发现最好的方法是:

选择一只袜子并将其收起来(为这双袜子创建一个“水桶”)如果下一个是上一个的一对,则将其放到现有的存储桶中,否则创建一个新的存储桶。

在最坏的情况下,这意味着您将有n/2个不同的存储桶,并且您将有n-2个关于哪个存储桶包含当前袜子的确定。显然,如果你只有几对,这个算法会很好地工作;我用了12双鞋。

它不是那么科学,但它工作得很好:)

其他回答

你试图解决错误的问题。

解决方案1:每次你把脏袜子放进洗衣篮时,把它们打个小结。这样你就不用在洗完衣服后做任何分类了。把它想象成在Mongo数据库中注册索引。未来需要做一些工作来节省CPU。

解决方案2:如果是冬天,你不必穿配套的袜子。我们是程序员。没有人需要知道,只要它有效。

解决方案3:分散工作。您希望异步执行如此复杂的CPU进程,而不阻塞UI。把那堆袜子塞进袋子里。只有在你需要的时候才找一双。这样,你的工作量就不那么明显了。

希望这有帮助!

考虑大小为“N”的哈希表。

如果我们假设正态分布,那么至少有一个袜子映射到一个存储桶的估计“插入”数量为NlogN(即,所有存储桶都已满)

我将此作为另一个谜题的一部分,但我很乐意被证明是错误的。这是我的博客文章

让“N”对应于袜子独特颜色/图案数量的近似上限。

一旦发生碰撞(也就是火柴),只需脱掉那双袜子。对下一批NlogN袜子重复相同的实验。它的美妙之处在于,由于人类思维的方式,你可以进行NlogN并行比较(冲突解决)

成本:移动袜子->高,查找/搜索袜子排成一排->小

我们想做的是减少移动次数,并用搜索次数进行补偿。此外,我们还可以利用智人的多威胁环境,在解密缓存中保存更多的东西。

X=您的,Y=您的配偶

从所有袜子的A堆开始:

选择两个袜子,将相应的X袜子放在X线上,将Y袜子放在Y线上的下一个可用位置。

直到A为空。

对于每行X和Y

选择行中的第一只袜子,沿着行搜索,直到找到相应的袜子。放入相应的袜子成品线。可选当您搜索线条时,当前正在查看的袜子与之前的袜子相同,请对这些袜子执行步骤2。

可选地,在第一步中,您从该行中拾取两个袜子,而不是两个,因为缓存内存足够大,我们可以快速识别其中一个袜子是否与您正在观察的行上的当前袜子匹配。如果你有幸拥有三只手臂,那么考虑到受试者的记忆足够大,你可以同时解析三只袜子。

直到X和Y都为空。

Done

然而,由于这与选择排序具有相似的复杂性,由于I/O(移动袜子)和搜索(搜索袜子的行)的速度,所花费的时间要少得多。

非算法答案,但当我这样做时“高效”:

步骤1)丢弃所有现有袜子第2步)去沃尔玛买10-n包的白色和m包黑色。日常无需其他颜色生活

然而,有时,我不得不再次这样做(丢失的袜子、损坏的袜子等),我讨厌太频繁地丢弃完美的袜子(我希望他们继续出售相同的袜子参考!),所以我最近采取了不同的方法。

算法答案:

考虑一下,如果你只为第二叠袜子画一只袜子,就像你正在做的那样,你在天真的搜索中找到匹配袜子的几率很低。

所以,随机挑选其中五个,记住它们的形状或长度。

为什么是五?通常情况下,人类在工作记忆中记住五到七个不同的元素是很好的——有点像RPN堆栈的人类等价物——五个是安全的默认值。

从2n-5的堆栈中选择一个。现在,在你画的五个图案中寻找一个匹配(视觉模式匹配-人类擅长用一个小堆栈),如果你没有找到一个,那么把它添加到你的五个。继续从袜子堆中随机挑选袜子,并与你的5+1袜子进行比较。随着堆栈的增长,它会降低性能,但会提高赔率。快得多。

请随意写下公式,以计算50%的匹配几率需要抽取多少样本。IIRC这是一个超几何定律。

我每天早上都会这样做,很少需要三次以上的平局——但我有n双类似的m形白袜子(大约10双,不分输赢)。现在你可以估计我的股票堆的大小:-)

顺便说一句,我发现,每次我需要一双袜子时,整理所有袜子的交易成本之和远远少于一次整理和装订袜子。准时制的效果更好,因为这样你就不必绑袜子了,而且边际回报也在减少(也就是说,当你在洗衣店的某个地方时,你一直在寻找那两到三只袜子,而你需要完成袜子的搭配,而你却在这上面浪费了时间)。

当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。

几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。

我通过以下方式做到这一点:

挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。

这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。

通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。

在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。

在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。