昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

拿起第一只袜子放在桌子上。现在再挑一只袜子;如果它与第一个拾取的匹配,请将其放在第一个拾取上。如果没有,把它放在桌子上,离第一个小距离。挑选第三只袜子;如果它与前两个匹配,请将它放在它们的上面,或者将它放置在距离第三个的一小段距离处。重复上述步骤,直到你捡起所有袜子。

其他回答

你试图解决错误的问题。

解决方案1:每次你把脏袜子放进洗衣篮时,把它们打个小结。这样你就不用在洗完衣服后做任何分类了。把它想象成在Mongo数据库中注册索引。未来需要做一些工作来节省CPU。

解决方案2:如果是冬天,你不必穿配套的袜子。我们是程序员。没有人需要知道,只要它有效。

解决方案3:分散工作。您希望异步执行如此复杂的CPU进程,而不阻塞UI。把那堆袜子塞进袋子里。只有在你需要的时候才找一双。这样,你的工作量就不那么明显了。

希望这有帮助!

拿起第一只袜子放在桌子上。现在再挑一只袜子;如果它与第一个拾取的匹配,请将其放在第一个拾取上。如果没有,把它放在桌子上,离第一个小距离。挑选第三只袜子;如果它与前两个匹配,请将它放在它们的上面,或者将它放置在距离第三个的一小段距离处。重复上述步骤,直到你捡起所有袜子。

当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。

几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。

我通过以下方式做到这一点:

挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。

这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。

通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。

在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。

在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。

案例1:所有袜子都是一样的(顺便说一句,这是我在现实生活中所做的)。

选择其中的任意两个组成一对。恒定时间。

案例2:有固定数量的组合(所有权、颜色、大小、纹理等)。

使用基数排序。这只是线性时间,因为不需要比较。

情况3:组合的数量事先未知(一般情况)。

我们必须进行比较,以检查两只袜子是否成对。选择基于O(n log n)比较的排序算法之一。

然而,在现实生活中,当袜子的数量相对较少(恒定)时,这些理论上的优化算法将无法很好地工作。这可能比顺序搜索花费更多的时间,理论上需要二次时间。

作为实际解决方案:

快速制作一堆易于区分的袜子。(用颜色表示)快速整理每一堆,并使用袜子的长度进行比较。作为一个人,你可以很快地决定用哪只袜子进行分区,以避免最坏的情况。(你可以看到多只袜子平行排列,这对你有利!)当垃圾堆达到一个阈值时,停止分类,在该阈值下,您可以立即找到不合适的袜子和短袜

如果你有1000只袜子,有8种颜色,平均分布,你可以在c*n时间内每125只袜子做4堆。以5只袜子为阈值,你可以在6次跑步中对每一堆袜子进行分类。(数2秒把袜子扔到正确的堆上,只需要不到4小时。)

如果你只有60只袜子、3种颜色和2种袜子(你/你妻子的),你可以在1次跑步中对每一堆10只袜子进行分类(同样阈值=5)。(数2秒,需要2分钟)。

最初的桶排序将加快您的进程,因为它在c*n时间内将n个袜子分成k个桶,因此您只需执行c*n*log(k)工作。(不考虑阈值)。所以,你所做的所有关于n*c*(1+log(k))的工作,其中c是把袜子扔在一堆上的时间。

与任何c*x*n+O(1)方法相比,只要log(k)<x-1,该方法将是有利的。


在计算机科学中,这可能很有用:我们有一个n个事物的集合,它们的顺序(长度)和等价关系(额外的信息,例如袜子的颜色)。等价关系允许我们对原始集合进行分区,并且在每个等价类中我们的顺序仍然保持不变。一个事物到它的等价类的映射可以在O(1)中完成,因此只需要O(n)就可以将每个项分配给一个类。现在我们已经使用了额外的信息,可以以任何方式对每个类进行排序。其优点是数据集已经明显更小。

该方法也可以嵌套,如果我们有多个等价关系->使颜色堆积,而不是在纹理上的每个堆积分区内,而不是按长度排序。任何等价关系如果创建一个分区,其中包含2个以上的元素,且大小大致相等,那么与排序相比,排序的速度都会有所提高(前提是我们可以直接将袜子分配给它的堆),并且排序可以在较小的数据集上快速进行。