昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。

其他回答

理论上的限制是O(n),因为你需要触摸每一只袜子(除非有些袜子已经配对)。

你可以用基数排序实现O(n)。你只需要为桶选择一些属性。

首先你可以选择(她的,我的)-把它们分成两堆,然后使用颜色(可以有任何颜色的顺序,例如按颜色名称的字母顺序)-按颜色将它们分成一堆(记住对同一堆中的所有袜子保持步骤1中的初始顺序),然后袜子的长度,然后是纹理,....

如果您可以选择有限数量的属性,但有足够多的属性可以唯一地标识每对属性,则应该使用O(k*n),如果我们可以考虑k是有限的,则使用O(n)。

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。

假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:

将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放

这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:

把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对

这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。

两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:

对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)

总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。

此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效

整理n双袜子的问题是O(n)。在你把它们扔进洗衣篮之前,你先把左边的衣服穿到右边的衣服上。取出时,你剪下线,把每一对线放进抽屉里——对n对线进行2次操作,所以O(n)。

现在,下一个问题很简单,你是自己洗衣服,还是妻子洗衣服。这可能是一个完全不同领域的问题。:)