昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

排序解决方案已经提出,但排序有点太多了:我们不需要排序;我们只需要平等团体。

所以散列就足够了(而且更快)。

对于每种颜色的袜子,形成一堆。重复输入篮中的所有袜子,并将它们分配到颜色堆上。在每个桩上循环,并通过其他度量(例如模式)将其分配到第二组桩中递归地应用此方案,直到您将所有袜子分发到非常小的堆上,您可以立即进行可视化处理

当SQL Server需要对庞大的数据集进行哈希连接或哈希聚合时,这种递归哈希分区实际上是由它完成的。它将其构建输入流分配到许多独立的分区中。该方案可线性扩展到任意数量的数据和多个CPU。

如果您可以找到一个分发密钥(哈希密钥),该密钥提供足够的存储桶,使得每个存储桶足够小,可以快速处理,那么您就不需要递归分区。不幸的是,我认为袜子没有这种特性。

如果每只袜子都有一个名为“PairID”的整数,那么可以根据PairID%10(最后一位)轻松地将它们分配到10个桶中。

我能想到的现实世界中最好的分区是创建一个堆积的矩形:一个维度是颜色,另一个是图案。为什么是长方形?因为我们需要O(1)随机访问桩。(3D长方体也可以,但这不太实用。)


更新:

并行性呢?多人能更快地匹配袜子吗?

最简单的并行化策略是让多个工人从输入篮中取出袜子,然后将袜子放到堆上。这只会增加这么多——想象100人在10个桩上战斗。同步成本(表现为手部碰撞和人类通信)破坏了效率和加速(参见通用可扩展性定律!)。这是否容易陷入僵局?不,因为每个工人一次只需要访问一堆。只有一个“锁”,就不会出现死锁。活锁可能是可能的,这取决于人类如何协调对桩的访问。他们可能只是使用随机退避,就像网卡在物理级别上那样,以确定什么卡可以独占地访问网络线路。如果它适用于NIC,那么它也应该适用于人类。如果每个工人都有自己的一组桩,它几乎可以无限扩展。然后,工人可以从输入篮中取出大块袜子(很少有人争抢,因为他们很少这样做),而且他们在分发袜子时根本不需要同步(因为他们有线程局部堆)。最后,所有工人都需要联合他们的桩组。我相信,如果工人形成一个聚合树,这可以在O(log(工人计数*每个工人的桩数))中完成。

元素的清晰度问题呢?正如文章所述,元素区别问题可以用O(N)来解决。袜子问题也是如此(如果你只需要一个分发步骤(我提出了多个步骤,只是因为人类不擅长计算-如果你在md5上分发(颜色、长度、图案…),即所有属性的完美哈希),那么一个步骤就够了)。

显然,一个速度不能比O(N)快,所以我们已经达到了最佳下限。

虽然输出不完全相同(在一种情况下,只是布尔值。在另一种情况中,是袜子对),但渐近复杂性是相同的。

其他回答

这是问错了问题。正确的问题是,我为什么要花时间整理袜子?如果你选择X个货币单位来计算你的空闲时间,那么每年的花费是多少?

通常情况下,这不仅仅是任何空闲时间,这是早晨的空闲时间,你可以躺在床上,或者喝咖啡,或者早点离开,不被交通堵塞。

退一步想办法解决问题通常是好的。

还有一个办法!

找一只你喜欢的袜子。考虑所有相关特征:不同照明条件下的颜色、整体质量和耐久性、不同气候条件下的舒适性以及气味吸收。同样重要的是,它们在储存过程中不应失去弹性,所以天然织物是好的,它们应该可以用塑料包装。

如果左脚和右脚的袜子没有区别,那就更好了,但这并不重要。如果袜子是左右对称的,找到一双袜子是O(1)运算,而对袜子进行排序是近似的O(M)运算,其中M是你家里扔袜子的地方的数量,理想情况下是一个小常数。

如果你选择了一双左右袜子不同的奇装异服,对左脚和右脚的桶进行全桶排序,取O(N+M),其中N是袜子的数量,M与上述相同。其他人可以给出找到第一双袜子的平均迭代次数的公式,但通过盲搜索找到一双袜子的最坏情况是N/2+1,对于合理的N来说,这在天文学上是不太可能的。当用Mk1 Eyeball扫描一堆未分类的袜子时,使用先进的图像识别算法和启发式方法可以加快速度。

因此,实现O(1)袜子配对效率的算法(假设对称袜子)为:

你需要估计你的余生需要多少双袜子,或者直到你退休并搬到更温暖的气候,不再需要穿袜子。如果你还年轻,你还可以估计我们需要多长时间才能在家里拥有袜子分拣机器人,而整个问题变得无关紧要。您需要了解如何批量订购您选择的袜子,以及它的价格,以及它们的送货方式。订购袜子!扔掉你的旧袜子。

另一个步骤3将包括比较几年来一次购买几双同样数量的可能更便宜的袜子的成本,并加上整理袜子的成本。但我要保证:批量购买更便宜!此外,库存袜子的价值会随着股价的上涨而增加,这比你在很多投资中得到的要多。此外,还有存储成本,但袜子确实不会占用壁橱顶部货架上的空间。

问题已解决。所以,只要买一双新袜子,扔掉/捐赠你的旧袜子,在知道你的余生每天都在节省金钱和时间之后,就可以幸福地生活下去。

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。

如果“移动”操作相当昂贵,而“比较”操作很便宜,并且无论如何都需要将整个集合移动到一个缓冲区中,在那里搜索速度比原始存储快得多。。。只需将排序整合到强制移动中即可。

我发现,将分拣过程整合到晾衣架中,这一过程变得轻而易举。无论如何,我需要拿起每一只袜子,然后把它挂起来(移动),把它挂在绳子上的某个特定位置几乎不需要任何费用。现在,为了不强制搜索整个缓冲区(字符串),我选择按颜色/阴影放置袜子。左边更黑,右边更亮,前面更鲜艳。现在,在我挂上每一只袜子之前,我先看看它的“右边附近”是否已经有一只匹配的袜子——这限制了“扫描”其他2-3只袜子——如果有,我就把另一只挂在旁边。然后,我把它们成对地卷起来,然后在干的时候把它们从绳子上取下来。

现在,这似乎与顶级答案所建议的“按颜色形成桩”没有什么不同,但首先,通过不选择离散桩而是选择范围,我没有问题将“紫色”分类为“红色”还是“蓝色”桩;它只是介于两者之间。然后通过集成两个操作(挂起晾干和分拣),挂起时的分拣开销大约是单独分拣的10%。

我提出了另一个解决方案,它不会承诺更少的操作,也不会减少时间消耗,但应该尝试看看它是否能成为一个足够好的启发式方法,在大量袜子配对中提供更少的时间消耗。

前提条件:不能保证有相同的袜子。如果它们的颜色相同,并不意味着它们的大小或图案相同。袜子随机洗牌。袜子的数量可能是奇数(有些不见了,我们不知道有多少)。准备记住一个变量“index”并将其设置为0。

结果将有一个或两个桩:1。“匹配”和2。“缺少”

启发式:

找到最与众不同的袜子。找到匹配项。如果没有匹配项,请将其放在“缺失”堆上。从1开始重复。直到没有最与众不同的袜子。如果袜子少于6只,请转到11只。盲目地将所有袜子与邻居配对(不要打包)找到所有匹配的对,将其打包并将打包的对移动到“匹配”的堆中;如果没有新的匹配项-将“索引”增加1如果“index”大于2(这可能取决于袜子的值因为袜子数量越多盲目配对)进入11打乱其余的转到1忘记“索引”挑选一只袜子查找其配对如果没有袜子,就把它移到“失踪”的那一堆如果找到匹配项,将其配对,将其打包并移动到“匹配”堆中如果还有不止一只袜子,那就去12只如果只剩下一个,请转到14满意的微笑:)

此外,还可以添加检查袜子是否损坏,就像移除袜子一样。它可以插入2到3之间,13到14之间。

我期待听到任何经验或更正。

拿起第一只袜子放在桌子上。现在再挑一只袜子;如果它与第一个拾取的匹配,请将其放在第一个拾取上。如果没有,把它放在桌子上,离第一个小距离。挑选第三只袜子;如果它与前两个匹配,请将它放在它们的上面,或者将它放置在距离第三个的一小段距离处。重复上述步骤,直到你捡起所有袜子。