昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

案例1:所有袜子都是一样的(顺便说一句,这是我在现实生活中所做的)。

选择其中的任意两个组成一对。恒定时间。

案例2:有固定数量的组合(所有权、颜色、大小、纹理等)。

使用基数排序。这只是线性时间,因为不需要比较。

情况3:组合的数量事先未知(一般情况)。

我们必须进行比较,以检查两只袜子是否成对。选择基于O(n log n)比较的排序算法之一。

然而,在现实生活中,当袜子的数量相对较少(恒定)时,这些理论上的优化算法将无法很好地工作。这可能比顺序搜索花费更多的时间,理论上需要二次时间。

其他回答

排序解决方案已经提出,但排序有点太多了:我们不需要排序;我们只需要平等团体。

所以散列就足够了(而且更快)。

对于每种颜色的袜子,形成一堆。重复输入篮中的所有袜子,并将它们分配到颜色堆上。在每个桩上循环,并通过其他度量(例如模式)将其分配到第二组桩中递归地应用此方案,直到您将所有袜子分发到非常小的堆上,您可以立即进行可视化处理

当SQL Server需要对庞大的数据集进行哈希连接或哈希聚合时,这种递归哈希分区实际上是由它完成的。它将其构建输入流分配到许多独立的分区中。该方案可线性扩展到任意数量的数据和多个CPU。

如果您可以找到一个分发密钥(哈希密钥),该密钥提供足够的存储桶,使得每个存储桶足够小,可以快速处理,那么您就不需要递归分区。不幸的是,我认为袜子没有这种特性。

如果每只袜子都有一个名为“PairID”的整数,那么可以根据PairID%10(最后一位)轻松地将它们分配到10个桶中。

我能想到的现实世界中最好的分区是创建一个堆积的矩形:一个维度是颜色,另一个是图案。为什么是长方形?因为我们需要O(1)随机访问桩。(3D长方体也可以,但这不太实用。)


更新:

并行性呢?多人能更快地匹配袜子吗?

最简单的并行化策略是让多个工人从输入篮中取出袜子,然后将袜子放到堆上。这只会增加这么多——想象100人在10个桩上战斗。同步成本(表现为手部碰撞和人类通信)破坏了效率和加速(参见通用可扩展性定律!)。这是否容易陷入僵局?不,因为每个工人一次只需要访问一堆。只有一个“锁”,就不会出现死锁。活锁可能是可能的,这取决于人类如何协调对桩的访问。他们可能只是使用随机退避,就像网卡在物理级别上那样,以确定什么卡可以独占地访问网络线路。如果它适用于NIC,那么它也应该适用于人类。如果每个工人都有自己的一组桩,它几乎可以无限扩展。然后,工人可以从输入篮中取出大块袜子(很少有人争抢,因为他们很少这样做),而且他们在分发袜子时根本不需要同步(因为他们有线程局部堆)。最后,所有工人都需要联合他们的桩组。我相信,如果工人形成一个聚合树,这可以在O(log(工人计数*每个工人的桩数))中完成。

元素的清晰度问题呢?正如文章所述,元素区别问题可以用O(N)来解决。袜子问题也是如此(如果你只需要一个分发步骤(我提出了多个步骤,只是因为人类不擅长计算-如果你在md5上分发(颜色、长度、图案…),即所有属性的完美哈希),那么一个步骤就够了)。

显然,一个速度不能比O(N)快,所以我们已经达到了最佳下限。

虽然输出不完全相同(在一种情况下,只是布尔值。在另一种情况中,是袜子对),但渐近复杂性是相同的。

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效

理论上的限制是O(n),因为你需要触摸每一只袜子(除非有些袜子已经配对)。

你可以用基数排序实现O(n)。你只需要为桶选择一些属性。

首先你可以选择(她的,我的)-把它们分成两堆,然后使用颜色(可以有任何颜色的顺序,例如按颜色名称的字母顺序)-按颜色将它们分成一堆(记住对同一堆中的所有袜子保持步骤1中的初始顺序),然后袜子的长度,然后是纹理,....

如果您可以选择有限数量的属性,但有足够多的属性可以唯一地标识每对属性,则应该使用O(k*n),如果我们可以考虑k是有限的,则使用O(n)。

我的解决方案并不完全符合您的要求,因为它正式需要O(n)“额外”空间。然而,考虑到我的条件,它在我的实际应用中非常有效。因此,我认为这应该很有趣。

与其他任务合并

我的特殊情况是,我不用烘干机,只是把衣服挂在普通的烘干机上。挂布需要O(n)操作(顺便说一句,我在这里总是考虑垃圾箱包装问题),这个问题本质上需要线性的“额外”空间。当我从桶里拿出一只新袜子时,如果这双袜子已经挂好了,我会试着把它挂在旁边。如果是新袜子,我会在旁边留出一些空间。

Oracle机器更好;-)

显然,这需要一些额外的工作来检查是否有匹配的袜子已经挂在某个地方,这将为计算机提供系数约为1/2的解O(n^2)。但在这种情况下,“人为因素”实际上是一种优势——如果匹配的袜子已经挂起,我通常可以很快(几乎为O(1))识别出它(可能涉及到大脑缓存中的一些难以察觉的因素)——将其视为一种有限的“预言机”,如oracle Machine;-)我们人类在某些情况下比数字机器有这些优势;-)

快到O(n)!

因此,将袜子配对的问题与挂布的问题联系起来,我可以免费获得O(n)“额外的空间”,并有一个及时的解决方案,大约O(n),只需要比简单的挂布多一点的工作,即使在非常糟糕的星期一早晨,也可以立即获得一双完整的袜子…;-)

创建一个哈希表,该表将用于不匹配的袜子,使用模式作为哈希。一只一只地重复袜子。如果袜子在哈希表中有图案匹配,请将袜子从表中取出并配对。如果袜子没有火柴,就把它放到桌子上。