昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。
作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。
哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。
因此,问题基本上是:
给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)
我将感谢回答以下方面的问题:
大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?
我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。
假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:
将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放
这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:
把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对
这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。
两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:
对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)
总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。
此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)
我提出了另一个解决方案,它不会承诺更少的操作,也不会减少时间消耗,但应该尝试看看它是否能成为一个足够好的启发式方法,在大量袜子配对中提供更少的时间消耗。
前提条件:不能保证有相同的袜子。如果它们的颜色相同,并不意味着它们的大小或图案相同。袜子随机洗牌。袜子的数量可能是奇数(有些不见了,我们不知道有多少)。准备记住一个变量“index”并将其设置为0。
结果将有一个或两个桩:1。“匹配”和2。“缺少”
启发式:
找到最与众不同的袜子。找到匹配项。如果没有匹配项,请将其放在“缺失”堆上。从1开始重复。直到没有最与众不同的袜子。如果袜子少于6只,请转到11只。盲目地将所有袜子与邻居配对(不要打包)找到所有匹配的对,将其打包并将打包的对移动到“匹配”的堆中;如果没有新的匹配项-将“索引”增加1如果“index”大于2(这可能取决于袜子的值因为袜子数量越多盲目配对)进入11打乱其余的转到1忘记“索引”挑选一只袜子查找其配对如果没有袜子,就把它移到“失踪”的那一堆如果找到匹配项,将其配对,将其打包并移动到“匹配”堆中如果还有不止一只袜子,那就去12只如果只剩下一个,请转到14满意的微笑:)
此外,还可以添加检查袜子是否损坏,就像移除袜子一样。它可以插入2到3之间,13到14之间。
我期待听到任何经验或更正。
当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。
几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。
我通过以下方式做到这一点:
挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。
这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。
通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。
在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。
在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。