昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

对于p双袜子(n=2p只袜子),我实际上是这样做的:

从袜子堆里随便拿一只袜子。对于第一只袜子,或者如果之前选择的所有袜子都已配对,只需将袜子放入前面未配对袜子“阵列”的第一个“槽”中。如果有一个或多个选定的未配对袜子,请对照阵列中的所有未配对袜子检查当前袜子。在构建阵列时,可以将袜子分为普通类别或类型(白色/黑色、脚踝/圆领、运动型/连衣裙),并“向下搜索”以仅比较同类。如果你找到了一个可以接受的匹配,把两只袜子放在一起,然后把它们从阵列中去掉。如果没有,请将当前袜子放入阵列中第一个打开的插槽中。对每只袜子重复上述步骤。

这种方案的最坏情况是,每双袜子都不同,必须完全匹配,而且你挑选的第一双n/2袜子都不同。这是你的O(n2)场景,极不可能。如果袜子的独特类型的数量t小于袜子对的数量p=n/2,并且每种类型的袜子都足够相似(通常在穿着相关的术语中),使得该类型的任何袜子都可以与任何其他袜子配对,那么正如我上面所推断的,你必须与之进行比较的袜子的最大数量是t,之后你拉动的下一只袜子将与未配对的袜子之一相匹配。这种情况在普通袜子抽屉中比在最坏情况下更可能发生,并将最坏情况的复杂性降低到O(n*t),其中通常t<<n。

其他回答

作为实际解决方案:

快速制作一堆易于区分的袜子。(用颜色表示)快速整理每一堆,并使用袜子的长度进行比较。作为一个人,你可以很快地决定用哪只袜子进行分区,以避免最坏的情况。(你可以看到多只袜子平行排列,这对你有利!)当垃圾堆达到一个阈值时,停止分类,在该阈值下,您可以立即找到不合适的袜子和短袜

如果你有1000只袜子,有8种颜色,平均分布,你可以在c*n时间内每125只袜子做4堆。以5只袜子为阈值,你可以在6次跑步中对每一堆袜子进行分类。(数2秒把袜子扔到正确的堆上,只需要不到4小时。)

如果你只有60只袜子、3种颜色和2种袜子(你/你妻子的),你可以在1次跑步中对每一堆10只袜子进行分类(同样阈值=5)。(数2秒,需要2分钟)。

最初的桶排序将加快您的进程,因为它在c*n时间内将n个袜子分成k个桶,因此您只需执行c*n*log(k)工作。(不考虑阈值)。所以,你所做的所有关于n*c*(1+log(k))的工作,其中c是把袜子扔在一堆上的时间。

与任何c*x*n+O(1)方法相比,只要log(k)<x-1,该方法将是有利的。


在计算机科学中,这可能很有用:我们有一个n个事物的集合,它们的顺序(长度)和等价关系(额外的信息,例如袜子的颜色)。等价关系允许我们对原始集合进行分区,并且在每个等价类中我们的顺序仍然保持不变。一个事物到它的等价类的映射可以在O(1)中完成,因此只需要O(n)就可以将每个项分配给一个类。现在我们已经使用了额外的信息,可以以任何方式对每个类进行排序。其优点是数据集已经明显更小。

该方法也可以嵌套,如果我们有多个等价关系->使颜色堆积,而不是在纹理上的每个堆积分区内,而不是按长度排序。任何等价关系如果创建一个分区,其中包含2个以上的元素,且大小大致相等,那么与排序相比,排序的速度都会有所提高(前提是我们可以直接将袜子分配给它的堆),并且排序可以在较小的数据集上快速进行。

排序解决方案已经提出,但排序有点太多了:我们不需要排序;我们只需要平等团体。

所以散列就足够了(而且更快)。

对于每种颜色的袜子,形成一堆。重复输入篮中的所有袜子,并将它们分配到颜色堆上。在每个桩上循环,并通过其他度量(例如模式)将其分配到第二组桩中递归地应用此方案,直到您将所有袜子分发到非常小的堆上,您可以立即进行可视化处理

当SQL Server需要对庞大的数据集进行哈希连接或哈希聚合时,这种递归哈希分区实际上是由它完成的。它将其构建输入流分配到许多独立的分区中。该方案可线性扩展到任意数量的数据和多个CPU。

如果您可以找到一个分发密钥(哈希密钥),该密钥提供足够的存储桶,使得每个存储桶足够小,可以快速处理,那么您就不需要递归分区。不幸的是,我认为袜子没有这种特性。

如果每只袜子都有一个名为“PairID”的整数,那么可以根据PairID%10(最后一位)轻松地将它们分配到10个桶中。

我能想到的现实世界中最好的分区是创建一个堆积的矩形:一个维度是颜色,另一个是图案。为什么是长方形?因为我们需要O(1)随机访问桩。(3D长方体也可以,但这不太实用。)


更新:

并行性呢?多人能更快地匹配袜子吗?

最简单的并行化策略是让多个工人从输入篮中取出袜子,然后将袜子放到堆上。这只会增加这么多——想象100人在10个桩上战斗。同步成本(表现为手部碰撞和人类通信)破坏了效率和加速(参见通用可扩展性定律!)。这是否容易陷入僵局?不,因为每个工人一次只需要访问一堆。只有一个“锁”,就不会出现死锁。活锁可能是可能的,这取决于人类如何协调对桩的访问。他们可能只是使用随机退避,就像网卡在物理级别上那样,以确定什么卡可以独占地访问网络线路。如果它适用于NIC,那么它也应该适用于人类。如果每个工人都有自己的一组桩,它几乎可以无限扩展。然后,工人可以从输入篮中取出大块袜子(很少有人争抢,因为他们很少这样做),而且他们在分发袜子时根本不需要同步(因为他们有线程局部堆)。最后,所有工人都需要联合他们的桩组。我相信,如果工人形成一个聚合树,这可以在O(log(工人计数*每个工人的桩数))中完成。

元素的清晰度问题呢?正如文章所述,元素区别问题可以用O(N)来解决。袜子问题也是如此(如果你只需要一个分发步骤(我提出了多个步骤,只是因为人类不擅长计算-如果你在md5上分发(颜色、长度、图案…),即所有属性的完美哈希),那么一个步骤就够了)。

显然,一个速度不能比O(N)快,所以我们已经达到了最佳下限。

虽然输出不完全相同(在一种情况下,只是布尔值。在另一种情况中,是袜子对),但渐近复杂性是相同的。

List<Sock> UnSearchedSocks = getAllSocks();
List<Sock> UnMatchedSocks = new list<Sock>();
List<PairOfSocks> PairedSocks = new list<PairOfSocks>();

foreach (Sock newSock in UnsearchedSocks)
{
  Sock MatchedSock = null;
  foreach(Sock UnmatchedSock in UnmatchedSocks)
  {
    if (UnmatchedSock.isPairOf(newSock))
    {
      MatchedSock = UnmatchedSock;
      break;
    }
  }
  if (MatchedSock != null)
  {
    UnmatchedSocks.remove(MatchedSock);
    PairedSocks.Add(new PairOfSocks(MatchedSock, NewSock));
  }
  else
  {
    UnmatchedSocks.Add(NewSock);
  }
}

为了说明从一堆袜子中配对有多有效,我们必须首先定义机器,因为配对不是通过图灵或随机存取机器完成的,而随机存取机器通常用作算法分析的基础。

机器

机器是被称为人类的现实世界元素的抽象。它能够通过一双眼睛从环境中阅读。我们的机器模型能够通过使用两个手臂来操纵环境。逻辑和算术运算是用我们的大脑计算的(希望是;-)。

我们还必须考虑可以使用这些仪器执行的原子操作的内在运行时间。由于物理限制,由手臂或眼睛执行的操作具有非恒定的时间复杂性。这是因为我们不能用手臂移动一大堆无穷无尽的袜子,也不能用眼睛看到一大堆袜子上的袜子。

然而,机械物理学也给了我们一些好处。我们不限于用手臂移动最多一只袜子。我们可以一次移动两个。

因此,根据之前的分析,应按降序使用以下操作:

逻辑和算术运算环境读数环境改造

我们还可以利用这样一个事实,即人们只有非常有限的袜子。因此,环境改造可能涉及到所有袜子。

算法

我的建议是:

把袜子堆里的袜子都铺在地板上。通过看地板上的袜子找到一双。从2开始重复,直到无法配对。从1开始重复,直到地板上没有袜子。

操作4是必要的,因为当将袜子铺在地板上时,一些袜子可能会隐藏其他袜子。算法分析如下:

分析

该算法以高概率终止。这是由于在第二步中找不到袜子。

对于以下对n双袜子配对的运行时分析,我们假设在步骤1之后,至少有一半的2n双袜子没有隐藏。所以在平均情况下,我们可以找到n/2对。这意味着步骤4的循环执行了O(logn)次。步骤2执行O(n^2)次。因此,我们可以得出结论:

该算法涉及O(lnn+n)环境修改(步骤1 O(lnn)加上从地板上挑选每双袜子)该算法涉及步骤2中的O(n^2)个环境读数该算法包括O(n^2)个逻辑和算术运算,用于在步骤2中比较袜子和另一袜子

因此,我们的总运行时复杂度为O(r*n^2+w*(lnn+n)),其中r和w分别是合理数量袜子的环境读取和环境写入操作的因素。省略了逻辑运算和算术运算的成本,因为我们假设需要恒定数量的逻辑运算和算数运算来决定2只袜子是否属于同一对。这可能在每种情况下都不可行。

我希望我能为这个问题贡献一些新的东西。我注意到,所有的答案都忽略了这样一个事实,即在不降低整体洗衣性能的情况下,有两点可以执行预处理。

此外,即使是大家庭,我们也不需要假设有大量袜子。袜子从抽屉中取出并穿上,然后在洗衣服之前,将它们扔到一个地方(可能是一个垃圾箱)。虽然我不会将所说的垃圾箱称为后进先出堆栈,但我认为可以安全地假设

人们把两只袜子大致扔在箱子箱子在任何时候都不会随机化,因此从该容器顶部获取的任何子集通常都包含一双袜子。

由于我所知道的所有洗衣机的尺寸都是有限的(不管你要洗多少袜子),而且洗衣机中会发生实际的随机性,所以无论我们有多少袜子,我们总是有几乎不含单品的小子集。

我们的两个预处理阶段是“把袜子放在晾衣绳上”和“把袜子从晾衣绳里拿出来”,我们必须这样做,这样才能得到既干净又干燥的袜子。和洗衣机一样,晾衣绳是有限的,我假设我们可以看到袜子的整个部分。

以下是put_socks_on_ine()的算法:

while (socks left in basket) {
 take_sock();
 if (cluster of similar socks is present) { 
   Add sock to cluster (if possible, next to the matching pair)
 } else {
  Hang it somewhere on the line, this is now a new cluster of similar-looking socks.      
  Leave enough space around this sock to add other socks later on 
 }
}

不要浪费时间四处移动袜子或寻找最佳搭配,这一切都应该在O(n)中完成,这也是我们将它们放在未分类的线上所需要的。袜子还没有配对,我们只有几个相似的簇。我们这里有一套有限的袜子是很有帮助的,因为这有助于我们创建“好”的簇(例如,如果这套袜子中只有黑色的袜子,那么按颜色簇就不是办法了)

下面是take_socks_from_line()的算法:

while(socks left on line) {
 take_next_sock();
 if (matching pair visible on line or in basket) {
   Take it as well, pair 'em and put 'em away
 } else {
   put the sock in the basket
 }

我应该指出,为了提高其余步骤的速度,明智的做法是不要随机选择下一个袜子,而是从每个簇中依次选择一个又一个袜子。这两个预处理步骤只需要将袜子放在晾衣绳上或放在篮子里,这是我们无论做什么都必须做的,因此这将大大提高洗衣性能。

在此之后,很容易执行哈希分区算法。通常,大约75%的袜子已经配对,给我留下了非常小的袜子子集,并且这个子集已经(有点)聚类(在预处理步骤之后,我没有在我的篮子中引入太多熵)。另一件事是,剩余的集群往往足够小,可以一次处理,因此可以从篮子中取出整个集群。

下面是sort_maining_clusters()的算法:

while(clusters present in basket) {
  Take out the cluster and spread it
  Process it immediately
  Leave remaining socks where they are
}

之后,只剩下几只袜子了。在这里,我将之前未配对的袜子引入到系统中,并在不使用任何特殊算法的情况下处理剩余的袜子——剩余的袜子非常少,可以非常快速地进行视觉处理。

对于所有剩余的袜子,我假设它们的同伴仍然没有洗,并将它们放在一边,以备下次迭代。如果你记录了一段时间内未配对袜子的增长(“袜子泄漏”),你应该检查你的垃圾箱——它可能会随机出现(你有猫睡在里面吗?)

我知道这些算法需要很多假设:一个充当某种LIFO堆栈的垃圾箱,一台有限的普通洗衣机,以及一条有限的普通晾衣绳——但这仍然适用于大量袜子。

关于并行性:只要你把两个袜子放在同一个箱子里,你就可以很容易地并行化所有这些步骤。